分析 由圖可知,∠ECD是$\frac{1}{2}$∠ECA,而∠ECA=180°-∠BCA,∠CAD是△ABC的外角,所以∠CAD=∠B+∠BCA,進而得出∠BCA=∠CAD-∠B,所以∠ECD是$\frac{1}{2}$[180°-(∠CAD-∠B)],化簡即可得出:∠ECD=90°+$\frac{1}{2}$(∠B-∠CAD).
解答 解:因為D是△ABC的外角平分線CD與BA的延長線的交點,
所以∠ECD是$\frac{1}{2}$∠ECA,
又∠ECA=180°-∠BCA,∠CAD是△ABC的外角,∠CAD=∠B+∠BCA,
所以∠BCA=∠CAD-∠B,
所以∠ECD=$\frac{1}{2}$[180°-(∠CAD-∠B)]
=90°+$\frac{1}{2}$(∠B-∠CAD).
點評 解答此題關鍵是明確△ABC的外角是與之不相鄰的兩個內角的和.
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com