【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將ABC經(jīng)過一次平移后得到A′B′C′,圖中標(biāo)出了點B的對應(yīng)點B′

(1)在給定方格紙中畫出平移后的A′B′C′

(2)畫出AB邊上的中線CDBC邊上的高線AE

(3)線段AA′與線段BB′的關(guān)系是: ;

(4) 求四邊形ACBB′的面積.

【答案】1)詳見解析;(2)詳見解析;(3)平行且相等;(427

【解析】

1)利用圖形平移的性質(zhì)畫出△A'B'C'即可;

2)先取線段AB的中點D、連接CD,過點AAEBC的延長線,垂足為E;

3)根據(jù)圖形平移的性質(zhì)即可得出結(jié)論;

4)根據(jù)S四邊形ACBB'=S梯形AFGB+SABC-SBGB'-SAF B'即可解答.

解:(1) 如圖:△A'B'C'即為所求;

(2)如圖: CD, AE即為所求;

(3) 由圖形平移的性質(zhì)可知,AA'//BB'AA'=BB',故答案為:平行且相等;

(4) S四邊形ACBB'=S梯形AFGB+SABC-SBGB'-SAF B'

=(7+3)×6+×4×4+×1×7+×3×5

=30+8--

=27

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABCD是一個正方形,其中幾塊陰影部分的面積如圖所示,則四邊形BMQN的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,AD=AC,ADAC,EAB的中點,FAC延長線上一點.

(1)EDEF,求證:ED=EF;

(2)(1)的條件下,若DC的延長線與FB交于點P,試判定四邊形ACPE是否為平行四邊形?并證明你的結(jié)論(請先補全圖形,再解答);

(3)ED=EF,EDEF垂直嗎?若垂直給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點.

(1)求梯子底端B外移距離BD的長度;

(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一扇窗戶垂直打開,即OM⊥OP,AC是長度不變的滑動支架,其中一端固定在窗戶的點A處,另一端在OP上滑動,將窗戶OM按圖示方向向內(nèi)旋轉(zhuǎn)35°到達ON位置,此時,點A、C的對應(yīng)位置分別是點B、D.測量出∠ODB為25°,點D到點O的距離為30cm.
(結(jié)果精確到1cm.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin55°≈0.8,cos55°≈0.6,tan55°≈1.4)

(1)求B點到OP的距離;
(2)求滑動支架的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB=90°,AC=BC=4,點DAB的中點,M,N分別在BCAC上,且BM=CN現(xiàn)有以下四個結(jié)論:

DN=DM; NDM=90°; 四邊形CMDN的面積為4; ④△CMN的面積最大為2.

其中正確的結(jié)論有(

A. ①②④; B. ①②③; C. ②③④ D. ①②③④.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市有一塊長為(3a+b)米,寬為(2a+b)米的長方形地塊,中間是邊長為(a+b)米的正方形,規(guī)劃部門計劃將在中間的正方形修建一座雕像,四周的陰影部分進行綠化,

1)綠化的面積是多少平方米?(用含字母a、b的式子表示)

2)求出當(dāng)a20,b12時的綠化面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,DECE,連接AE并延長交BC的延長線于點F.

(1)求證:△ADE≌△FCE;

(2)AB2BCF36°,求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案