分析 連接BE,首先由含30度角的直角三角形的性質(zhì)和勾股定理求出AB和AC的長(zhǎng),再判定△ABE是直角三角形,由勾股定理得到BE的長(zhǎng),由SAS證得△BCE≌△DCE,即可得出結(jié)果.
解答 解:連接BE,如圖所示:
∵在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=1,
∴AB=2BC=2,AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
∵△ACE為等邊三角形,
∴∠CAE=∠ACE=60°,AC=AE=$\sqrt{3}$,
∴∠BAE=∠BAC+∠CAE=30°+60°=90°,∠BCE=90°+60°=150°,
∴BE=$\sqrt{A{B}^{2}+A{E}^{2}}$=$\sqrt{{2}^{2}+(\sqrt{3})^{2}}$=$\sqrt{7}$,
∵△BCD是等邊三角形,
∴BC=CD,∠BCD=60°,
∴∠DCE=360°-150°-60°=150°=∠BCE,
在△BCE和△DCE中,
$\left\{\begin{array}{l}{BC=DC}&{\;}\\{∠BCE=∠DCE}&{\;}\\{CE=CE}&{\;}\end{array}\right.$,
∴△BCE≌△DCE(SAS),
∴DE=BE=$\sqrt{7}$.
點(diǎn)評(píng) 本題考查了勾股定理、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、含30°角的直角三角形的性質(zhì);熟練掌握等邊三角形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 2 | C. | -4 | D. | 4或-4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com