【題目】隨著社會的快速發(fā)展,人們對生活質量的要求越來越高,凈水器已經走入普通百姓家庭.某電器公司銷售A、B兩種型號的凈水器,第一周售出A型號凈水器4臺,B型號凈水器5臺,收人20500元.第二周售出A型號凈水器6臺,B型號凈水器10臺,收人36000元.
(1)求A、B兩種型號的凈水器的銷售單價;
(2)若該電器公司計劃第三周銷售這兩種型號凈水器20臺,要使銷售收入不低于45000元,則第三周至少要售出A種型號的凈水器多少臺?
【答案】(1)A、B兩種型號的凈水器的銷售單價分別為2500元/臺,2100元/臺;(2)第三周至少要售出A種型號的凈水器8臺;
【解析】
設A種型號的凈水器的銷售單價為x元/臺,B種型號的凈水器的銷售單價為y元/臺,列出方程組解方程組即可,第二問設銷售A種型號的凈水器m臺,則銷售B種型號的凈水器(20﹣m)臺,列出不等式解不等式即可
解:(1)A種型號的凈水器的銷售單價為x元/臺,B種型號的凈水器的銷售單價為y元/臺,
根據題意得:
解得:
答:A、B兩種型號的凈水器的銷售單價分別為2500元/臺,2100元/臺,
(2)設銷售A種型號的凈水器m臺,則銷售B種型號的凈水器(20﹣m)臺
根據題意得:2500m+2100(20﹣m)≥45000
解得:m≥7
且m取正整數,
∴最小值為8
答第三周至少要售出A種型號的凈水器8臺
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,E為AD的中點,F為CD上一點,且DF=2CF,沿BE將△ABE翻折,如果點A恰好落在BF上,則AD=_.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數y=ax2+bx+c與x軸相交于點A(﹣1,0)和B(3,0),與y軸交于點C,連接AC、BC,且∠ACB=90°.
(1)求二次函數的解析式;
(2)如圖(1),若N是AC的中點,M是BC上一點,且滿足CM=2BM,連AM、BN相交于點E,求點M的坐標和△EMB的面積;
(3)如圖(2),將△AOC沿直線BC平移得到△A′O′C′,再將△A′O′C′沿A′C′翻折得到△A′O′C′,連接AO′,AC′,請問△AO′C′能否構成等腰三角形?若能,請求出所有符合條件的點C的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,拋物線y=x2+bx+c經過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數解析式;
(2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;
(3)在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC,AB=AC,D為直線BC上一點,E為直線AC上一點,AD=AE,設∠BAD=α,∠CDE=β,
(1)如圖1,若點D在線段BC上,點E在線段AC上.∠ABC=60°,∠ADE=70°,則α= °;β= °.
(2)如圖2,若點D在線段BC上,點E在線段AC上,則α,β之間有什么關系式?說明理由.
(3)是否存在不同于(2)中的α,β之間的關系式?若存在,請寫出這個關系式(寫出一種即可),說明理由;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是CD邊的中點,且BE⊥AC于點F,連接DF,則下列結論錯誤的是( 。
A. △ADC∽△CFBB. AD=DF
C. D. =
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點C(0,3),拋物線的頂點為A(2,0),與y軸交于點B(0,1),F在拋物線的對稱軸上,且縱坐標為1.點P是拋物線上的一個動點,過點P作PM⊥x軸于點M,交直線CF于點H,設點P的橫坐標為m.
(1)求拋物線的解析式;
(2)若點P在直線CF下方的拋物線上,用含m的代數式表示線段PH的長,并求出線段PH的最大值及此時點P的坐標;
(3)當PF﹣PM=1時,若將“使△PCF面積為2”的點P記作“巧點”,則存在多個“巧點”,且使△PCF的周長最小的點P也是一個“巧點”,請直接寫出所有“巧點”的個數,并求出△PCF的周長最小時“巧點”的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知A,B,C,D四點的坐標依次為(0,0),(6,2),(8,8),(2,6),若一次函數y=mx﹣6m+2(m≠0)圖象將四邊形ABCD的面積分成1:3兩部分,則m的值為( 。
A. ﹣4B. ,﹣5C. D. ,﹣4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形中,,,是邊上一點,連接,將矩形沿折疊,頂點恰好落在邊上點處,延長交的延長線于點.
(1)求線段的長;
(2)如圖2,,分別是線段,上的動點(與端點不重合),且,設,.
①寫出關于的函數解析式,并求出的最小值;
②是否存在這樣的點,使是等腰三角形?若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com