【題目】如圖,折疊長方形紙片的一邊AD,使點D落在BC邊上的點F處,已知BC=10cm,AB=8cm,求EC的長。
【答案】3cm
【解析】試題分析:根據矩形的性質得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根據折疊的性質得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理計算出BF=6,則FC=4,設EC=x,則DE=EF=8﹣x,在Rt△EFC中,根據勾股定理得x2+42=(8﹣x)2,然后解方程即可.
試題解析:∵四邊形ABCD為矩形, ∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,
∵折疊矩形的一邊AD,使點D落在BC邊的點F處 ∴AF=AD=10,DE=EF,
在Rt△ABF中,BF===6, ∴FC=BC﹣BF=4,
設EC=x,則DE=8﹣x,EF=8﹣x, 在Rt△EFC中, ∵EC2+FC2=EF2,
∴x2+42=(8﹣x)2,解得x=3, ∴EC的長為3cm.
科目:初中數(shù)學 來源: 題型:
【題目】二孩子政策的落實引起了全社會的關注,某校學生數(shù)學興趣小組為了了解本校同學父母生育二孩子的態(tài)度,在學校抽取了部分同學對父母生育二孩子所持的態(tài)度進行了問卷調查,調查分別為非常贊同、贊同、無所謂、不贊同等四種態(tài)度,現(xiàn)將調查統(tǒng)計結果制成了如圖兩幅統(tǒng)計圖,請結合兩幅統(tǒng)計圖,回答下列問題:
(1)在這次問卷調查中一共抽取了__________名學生,a=________%;
(2)請補全條形統(tǒng)計圖;
(3)持“不贊同”態(tài)度的學生人數(shù)的百分比所占扇形的圓心角為__________度;
(4)若該校有3000名學生,請你估計該校學生對父母生育二孩子持“贊同”和“非常贊同”兩種態(tài)度的人數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點B順時針旋轉90°至△DBE后,再把△ABC沿射線AB平移至△FEG,DE、FG相交于點H.
(1)判斷線段DE、FG的位置關系,并說明理由;
(2)連結CG,求證:四邊形CBEG是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.
(1)試判斷直線AB與直線CD的位置關系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】合并同類項解方程:一般是把方程左邊含未知數(shù)的項合并,把右邊的常數(shù)項合并,從而把方程化簡為________(a≠0,a、b是常數(shù))的形式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于問題:從一批冰箱中抽取100臺,調查冰箱的使用壽命.
該問題的總體是:________________________;個體是:_______________________;
樣本是:_____________________;樣本容量是:________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com