【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(一1,0).
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M是拋物線對稱軸上的一個動點,當(dāng)△ACM周長最小時,求點M的坐標(biāo)及△ACM的最小周長.
【答案】(1)y=x2-x-2;(, -);(2)△ABC是直角三角形;(3),△ACM最小周長是.
【解析】試題分析:(1)直接將(﹣1,0),代入解析式進(jìn)而得出答案,再利用配方法求出函數(shù)頂點坐標(biāo);
(2)分別得出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,進(jìn)而利用勾股定理的逆定理得出即可;
(3)利用軸對稱最短路線求法得出M點位置,再求△ACM周長最小值.
解:(1)∵點A(﹣1,0)在拋物線y=x2+bx﹣2上,
∴×(﹣1 )2+b×(﹣1)﹣2=0,
解得:b=﹣,
∴拋物線的解析式為y=x2﹣x﹣2.
y=(x﹣)2﹣,
∴頂點D的坐標(biāo)為:(,﹣);
(2)當(dāng)x=0時y=﹣2,∴C(0,﹣2),OC=2.
當(dāng)y=0時,x2﹣x﹣2=0,
解得:x1=﹣1,x2=4,
∴B (4,0),
∴OA=1,OB=4,AB=5.
∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,
∴AC2+BC2=AB2.
∴△ABC是直角三角形.
(3)如圖所示:連接AM,
點A關(guān)于對稱軸的對稱點B,BC交對稱軸于點M,根據(jù)軸對稱性及兩點之間線段最短可知,
MC+MA的值最小,即△ACM周長最小,
設(shè)直線BC解析式為:y=kx+d,則,
解得:,
故直線BC的解析式為:y=x﹣2,
當(dāng)x=時,y=﹣,
∴M(,﹣),
△ACM最小周長是:AC+AM+MC=AC+BC=+2=3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=6,AC=4,BC=5.
(1)如圖1,若AD是∠BAC的平分線,DE∥AB,求CE的長與 的比值;
(2)如圖2,將邊AC折疊,使得AC在AB邊上,折痕為AM,再將邊MB折疊,使得MB'與MC'重合,折痕為MN,求AN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點P(-3,5) 所在的象限是( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校未為了解學(xué)生每天參加體育鍛煉的時間情況,隨機(jī)選取該校的部分學(xué)生進(jìn)行調(diào)查.以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.
組別 | A | B | C | D | E |
時間t/min | t<45 | 45≤t<60 | 60≤t<75 | 75≤t<90 | t≥90 |
人數(shù) | 12 | 18 | m | 30 | 18 |
根據(jù)以上信息,解答下列問題:
(1)被調(diào)查的學(xué)生中,每天參加體育鍛煉的時間不少于90min的有_____人,這些學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為_____%,每天參加體育鍛煉的時間不足60min的有_____人;
(2)被調(diào)查的學(xué)生總數(shù)為_____人,統(tǒng)計表中m的值為_____,統(tǒng)計圖中n的值為_____,被調(diào)查學(xué)生每天參加體育鍛煉時間的中位數(shù)落在_____組;
(3)該校共有960名學(xué)生,根據(jù)調(diào)查結(jié)果,估計該校每天參加體育鍛煉的時間不少于60min的學(xué)生數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,邊AB的垂直平分線DE交AB于點E,交BC于點D,CD=3,則BC的長為( )
A.6
B.6
C.9
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=120°,CD平分∠ACB,AE∥DC,交BC的延長線于點E.
求證:△ACE是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E(x1,y1),F(x2,y2)在拋物線y=ax2+bx+c上,且在該拋物線對稱軸的同側(cè)(點E在點F的左側(cè)),過點E、F分別作x軸的垂線,分別交x軸于點B、D,交直線y=2ax+b于點A、C.設(shè)S為四邊形ABDC的面積.則下列關(guān)系正確的是( )
A. S=y2+y1 B. S=y2+2y1 C. S=y2﹣y1 D. S=y2﹣2y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把拋物線y=2x2向上平移5個單位,所得拋物線的解析式為( )
A.y=2x2+5
B.y=2x2﹣5
C.y=2(x+5)2
D.y=2(x﹣5)2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com