【題目】如圖,在菱形ABCD中,∠ABC60°,MAD的中點(diǎn),連接BM,交ACE,在CB上取一點(diǎn)F,使得CFAE,連接AF,交BMG,連接CG

1)求∠BGF的度數(shù);

2)求的值;

3)求證:BGCG

【答案】160°;(2 ;(3)證明見(jiàn)解析

【解析】

1)證明△BAE≌△ACFSAS),推出∠ABE=∠CAF可得結(jié)論.

2)證明△BAG∽△BMA,推出,推出即可解決問(wèn)題.

3)想辦法證明△CBG∽△MBC可得結(jié)論.

解:(1)∵四邊形ABCD是菱形,

ABBCCDAD,∠ABC=∠ADC60°,

∴△ABC,△ADC都是等邊三角形,

ABAC,∠BAE=∠ACF60°

AECF,

∴△BAE≌△ACFSAS),

∴∠ABE=∠CAF,

∴∠BGF=∠ABE+BAG=∠CAF+BAG=∠BAC60°

2)∵∠BAG+ABG=∠ABG+CBM60°,

∴∠BAG=∠CBM,

ADCB,

∴∠AMB=∠CBM,

∴∠BAG=∠BMA,

∵∠ABG=∠ABM,

∴△BAG∽△BMA

,

AMMDADAB,

3)設(shè)AMDMx,連接CM,

∵△ACD是等邊三角形,

CMAD,

CMAM,

ADCB,

CMBC,

∴∠BCM90°,

ADBC2x,

BM

∵△BAG∽△BMA,

,

BG

,

∵∠CBG=∠CBM,

∴△CBG∽△MBC,

∴∠BGC=∠BCM90°

BGCG

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:RtABC,∠C90°.

1)點(diǎn)EBC邊上,且△ACE的周長(zhǎng)為ACBC,以線段AE上一點(diǎn)O為圓心的⊙O恰與AB、BC邊都相切.請(qǐng)用無(wú)刻度的直尺和圓規(guī)確定點(diǎn)E、O的位置;

2)若BC8,AC4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時(shí)間到B處.在B處小亮觀測(cè)到媽媽所在的P處在北偏西37°的方向上,這時(shí)小亮與媽媽相距多少米(精確到1米)?

(參考數(shù)據(jù):sin37°≈0.60cos37°≈0.80,tan37°≈0.75≈1.41,≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)D為邊BC的中點(diǎn),點(diǎn)EABC內(nèi),AE平分∠BAC,CEAE點(diǎn)FAB上,且BF=DE

1)求證:四邊形BDEF是平行四邊形

2)線段AB,BF,AC之間具有怎樣的數(shù)量關(guān)系?證明你所得到的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn))和格點(diǎn)O

1)平移ABC,使得點(diǎn)A與點(diǎn)O重合,畫(huà)出平移后的A′B′C′

2)畫(huà)出ABC關(guān)于點(diǎn)O對(duì)稱的DEF;

3)判斷A′B′C′DEF是否成中心對(duì)稱?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是矩形ABCD的邊CD上一點(diǎn),把ADE沿AE對(duì)折,點(diǎn)D的對(duì)稱點(diǎn)F恰好落在BC上,已知折痕AE=cm,且tanEFC=,那么該矩形的周長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),直線與拋物線交于兩點(diǎn),其中點(diǎn)的橫坐標(biāo)為2

1)求AB兩點(diǎn)的坐標(biāo)及直線AC的表達(dá)式;

2P是線段AC上一動(dòng)點(diǎn)(PA,C不重合),過(guò)點(diǎn)P軸的平行線交拋物線于點(diǎn)E,求面積的最大值;

3)點(diǎn)H是拋物線上一動(dòng)點(diǎn),在軸上是否存在點(diǎn)F,使得四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在請(qǐng)直接寫(xiě)出所有滿足條件的點(diǎn)F坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某區(qū)1500名小學(xué)生和初中生的視力情況和他們每節(jié)課課間戶外活動(dòng)平均時(shí)長(zhǎng)的統(tǒng)計(jì)圖.

1)根據(jù)圖1,計(jì)算該區(qū)1500名學(xué)生的近視率;

2)根據(jù)圖2,從兩個(gè)不同的角度描述該區(qū)1500名學(xué)生各年級(jí)近視率的變化趨勢(shì);

3)根據(jù)圖1、圖2、圖3,描述該區(qū)1500名學(xué)生近視率和所在學(xué)段(小學(xué)、初中)、每節(jié)課課間戶外活動(dòng)平均時(shí)長(zhǎng)的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】幾何探究:

(問(wèn)題發(fā)現(xiàn))

1)如圖1所示,ABCADE是有公共頂點(diǎn)的等邊三角形,BD、CE的關(guān)系是_______(選填“相等”或“不相等”);(請(qǐng)直接寫(xiě)出答案)

 

(類比探究)

2)如圖2所示,ABCADE是有公共頂點(diǎn)的含有角的直角三角形,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由;

(拓展延伸)

3)如圖3所示,ADEABC是有公共頂點(diǎn)且相似比為1 : 2的兩個(gè)等腰直角三角形,將ADE繞點(diǎn)A自由旋轉(zhuǎn),若,當(dāng)BD、E三點(diǎn)共線時(shí),直接寫(xiě)出BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案