【題目】已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點A(2,1).
(1)分別求出這兩個函數(shù)的解析式;
(2)當x取什么范圍時,反比例函數(shù)值大于0;
(3)若一次函數(shù)與反比例函數(shù)另一交點為B,且縱坐標為﹣4,當x取什么范圍時,反比例函數(shù)值大于一次函數(shù)的值;
(4)試判斷點P(﹣1,5)關于x軸的對稱點P′是否在一次函數(shù)y=kx+m的圖象上.
【答案】(1)y=,y=2x﹣3;(2)x>0;(3)x<﹣0.5或0<x<2;(4)點P′在直線上.
【解析】試題分析:(1)根據(jù)題意,反比例函數(shù)y=的圖象過點A(2,1),可求得k的值,進而可得解析式;一次函數(shù)y=kx+m的圖象過點A(2,1),代入求得m的值,從而得出一次函數(shù)的解析式;(2)根據(jù)(1)中求得的解析式,當y>0時,解得對應x的取值即可;
(3)由題意可知,反比例函數(shù)值大于一次函數(shù)的值,即可得>2x﹣3,解得x的取值范圍即可;
(4)先根據(jù)題意求出P′的坐標,再代入一次函數(shù)的解析式即可判斷P′是否在一次函數(shù)y=kx+m的圖象上..
試題解析:解:(1)根據(jù)題意,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點A(2,1),
則反比例函數(shù)y=中有k=2×1=2,
y=kx+m中,k=2,
又∵過(2,1),解可得m=﹣3;
故其解析式為y=,y=2x﹣3;
(2)由(1)可得反比例函數(shù)的解析式為y=,
令y>0,即>0,解可得x>0.
(3)根據(jù)題意,要反比例函數(shù)值大于一次函數(shù)的值,
即>2x﹣3,解可得x<﹣0.5或0<x<2.
(4)根據(jù)題意,易得點P(﹣1,5)關于x軸的對稱點P′的坐標為(﹣1,﹣5)
在y=2x﹣3中,x=﹣1時,y=﹣5;
故點P′在直線上.
科目:初中數(shù)學 來源: 題型:
【題目】對于給定的兩點,若存在點,使得三角形的面積等于1,則稱點為線段的“單位面積點”. 已知在平面直角坐標系中,為坐標原點,點. 若將線段沿軸正方向平移個單位長度,使得線段上存在線段的“單位面積點”,則的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,已知點M是線段AB的黃金分割點,且AM>BM,AD=AM,F(xiàn)B=BM,EF和GM把矩形ABCD分成四個小矩形,其面積分別用S1,S2,S3,S4表示,EF與MG相交與點N,則以下結(jié)論正確的有( 。
①N是GM的黃金分割點 ②S1=S4③.
A. ①② B. ①③ C. ③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在等邊三角形中,是邊上的動點,以為一邊,向上作等邊三角形,連接.
(1)和全等嗎?請說明理由;
(2)試說明:;
(3)如圖(2),將動點運動到邊的延長線上,所作三角形仍為等邊三角形,請問是否仍有?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,四邊形ABCD中,BD⊥AD,E為BD上一點,AE=BC,CE⊥BD,CE=ED
(1)已知AB=10,AD=6,求CD;
(2)如圖2,F為AD上一點,AF=DE,連接BF,交BF交AE于G,過G作GH⊥AB于H,∠BGH=75°.求證:BF=2GH+EG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB垂直弦CD于點E,點F在AB的延長線上,且∠BCF=∠A.
(1)求證:直線CF是⊙O的切線;
(2)若⊙O的半徑為5,DB=4.求sin∠D的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ADC=∠ABC=90°,與∠ADC、∠ABC相鄰的兩外角平分線交于點E,若∠A=50°,則∠E的度數(shù)為( )
A. 60°B. 50°C. 40°D. 30°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設E點的運動時間為t秒(0≤t<6),連接DE,當△BDE是直角三角形時,t的值為( )
A.2B.2.5或3.5
C.3.5或4.5D.2或3.5或4.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com