【題目】如圖,△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,BD⊥l,AE⊥l,垂足分別為D、E.
(1)當(dāng)直線l不與底邊AB相交時(shí),求證:ED=AE+BD;
(2)如圖2,將直線l繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使l與底邊AB相交時(shí),請(qǐng)你探究ED、AE、BD三者之間的數(shù)量關(guān)系.
【答案】(1)證明見解析;
(2)ED=BD﹣AE,理由見解析.
【解析】(1)根據(jù)垂直定義求出∠AEC=∠BDC=90°,求出∠EAC+∠ACE=90°,
∠EAC+∠ACE=90°,得∠EAC=∠BCD,根據(jù)AAS推出△AEC≌△CDB,再根據(jù)全等三角形的性質(zhì)推出CE=BD和AE=CD即可;(2)同(1)可得證.
解:(1)∵直線l過點(diǎn)C,BD⊥l,AE⊥l,
∴∠AEC=∠BDC=90°,
∵∠ACB=90°,
∴∠EAC+∠ACE=90°,∠BCD+∠ACE=90°,
∴∠EAC=∠BCD,
在△AEC和△CDB中,
∠EAC=∠BCD,∠AEC=∠BDC,AC=BC,
∴△AEC≌△CDB(AAS),
∴CE=BD,AE=CD,
∵ED=CE+CD,
∴ED=AE+BD;
(2)ED=BD﹣AE,
理由是:∵直線l過點(diǎn)C,BD⊥l,AE⊥l,
∴∠AEC=∠BDC=90°,
∵∠ACB=90°,
∴∠EAC+∠ACE=90°,∠BCD+∠ACE=90°,
∴∠EAC=∠BCD,
在△AEC和△CDB中,
∠EAC=∠BCD,∠AEC=∠BDC,AC=BC,
∴△AEC≌△CDB(AAS),
∴CE=BD,AE=CD,
∵ED=CE﹣CD,
∴ED=BD﹣AE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表反映的是某地區(qū)電的使用量x(千瓦時(shí))與應(yīng)交電費(fèi)y(元)之間的關(guān)系,下列說法不正確的是( )
用電量x(千瓦時(shí)) | 1 | 2 | 3 | 4 | … |
應(yīng)交電費(fèi)y(元) | 0.55 | 1.1 | 1.65 | 2.2 | … |
A. x與y都是變量,且x是自變量,y是函數(shù)
B. 用電量每增加1千瓦時(shí),電費(fèi)增加0.55元
C. 若用電量為8千瓦時(shí),則應(yīng)交電費(fèi)4.4元
D. y是x的反比例函數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ΔABC中,∠BAC=90°,AB=AC,點(diǎn)D在 BC上,且BD=BA,點(diǎn)E在BC的延長(zhǎng)線上,且CE=CA,
(1)試求∠DAE的度數(shù).
(2)如果把第(1)題中“AB=AC”的條件舍去,其余條件不變,那么∠DAE的度數(shù)會(huì)改變嗎?
(3)如果把第(1)題中“∠BAC=90°”的條件改為“∠BAC>90°”,其余條件不變,那么∠DAE與∠BAC有怎樣的大小關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn)(2,1)關(guān)于x軸的對(duì)稱點(diǎn)是( )
A. (-2,1) B. (-2,-1) C. (2,-1) D. (1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線段MC上的一個(gè)動(dòng)點(diǎn),連接DN,ME,DN與ME相交于點(diǎn)O.若△OMN是直角三角形,則DO的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校安排學(xué)生住宿,若每室住8人,則有12人無法安排;若每室住9人,可空出2個(gè)房間.這個(gè)學(xué)校的住宿生有多少人?宿舍有多少房間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)5,10,15,x,9的平均數(shù)是8,那么這組數(shù)據(jù)的中位數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,①若AB=BC=CA,則△ABC是等邊三角形;②屬于軸對(duì)稱圖形,且有一個(gè)角為60°的三角形是等邊三角形;③有三條對(duì)稱軸的三角形是等邊三角形;④有兩個(gè)角是60°的三角形是等邊三角形,上述結(jié)論中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com