【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于AB的兩點(diǎn),∠ABD2BAC.過點(diǎn)CCEDB,垂足為E,直線ABCE相交于F點(diǎn).

1)求證:CF為⊙O的切線;

2)若CE2,BE1,求BD長.

【答案】1)見解析;(2BD3

【解析】

1)連結(jié)OC,由于∠A=OCA,則根據(jù)三角形外角性質(zhì)得∠BOC=2A,而∠ABD=2BAC,所以∠ABD=BOC,根據(jù)平行線的判定得到OCBD,再CEBD得到OCCE,然后根據(jù)切線的判定定理得CF為⊙O的切線;
2)過點(diǎn)OOGDE,垂足為G,則可證四邊形OCEG是矩形,可得OG=CE=2,OC=GE=1+GB,根據(jù)勾股定理可求GB的長,根據(jù)垂徑定理可求BD的長.

解:(1)如圖:連結(jié)OC,

OAOC,

∴∠A=∠OCA

∴∠BOC=∠A+OCA2A,

∵∠ABD2BAC,

∴∠ABD=∠BOC

OCBD,

CEBD,

OCCE,

CF為⊙O的切線;

2)如圖:過點(diǎn)OOGDE,垂足為G

OGDEOCCE,DECE

∴四邊形OCEG是矩形

OGCE2,OCGE1+GB

RtOGB中,OB2OG2+GB2

∴(1+GB24+GB2

GB,

OGDB

BD2GB3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將RtABC平移到A'B'C'的位置,其中∠C90°使得點(diǎn)C'ABC的內(nèi)心重合,已知AC4,BC3,則陰影部分的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,D是⊙O上一點(diǎn),DEAB于點(diǎn)E,且∠ADE60°,C上一點(diǎn),連結(jié)ACCD

1)求∠ACD的度數(shù);

2)證明:AD2ABAE;

3)如果AB8,∠ADC45°,請你編制一個計(jì)算題(不標(biāo)注新的字母),并直接給出答案.(根據(jù)編出的問題層次,給不同的得分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017重慶A卷第11題)如圖,小王在長江邊某瞭望臺D處,測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為( 。▍⒖紨(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

問題情境:

(1)如圖1,兩塊等腰直角三角板△ABC和△ECD如圖所示擺放,其中∠ACB=∠DCE=90°,點(diǎn)F,H,G分別是線段DE,AE,BD的中點(diǎn),A,C,D和B,C,E分別共線,則FH和FG的數(shù)量關(guān)系是   ,位置關(guān)系是   

合作探究:

(2)如圖2,若將圖1中的△DEC繞著點(diǎn)C順時針旋轉(zhuǎn)至A,C,E在一條直線上,其余條件不變,那么(1)中的結(jié)論還成立嗎?若成立,請證明,若不成立,請說明理由.

(3)如圖3,若將圖1中的△DEC繞著點(diǎn)C順時針旋轉(zhuǎn)一個銳角,那么(1)中的結(jié)論是否還成立?若成立,請證明,若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為,E,F分別是ABBC的中點(diǎn),AFDE,DB分別交于點(diǎn)MN,則△DMN的面積=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個頂點(diǎn)分別是A-4, 1),B-1,3),C-1,1

1)將△ABC以原點(diǎn)O為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△;平移△ABC,若A對應(yīng)的點(diǎn)坐標(biāo)為(-4-5),畫出△;

2)若△繞某一點(diǎn)旋轉(zhuǎn)可以得到△,直接寫出旋轉(zhuǎn)中心坐標(biāo)是__________;

3)在x軸上有一點(diǎn)P是的PA+PB的值最小,直接寫出點(diǎn)P的坐標(biāo)___________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的部分對應(yīng)值如下表所示:

-1

0

1

2

3

4

6

1

-2

-3

-2

m

下面有四個論斷:

①拋物線的頂點(diǎn)為;

;

③關(guān)于的方程的解為

其中,正確的有___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖以正五邊形ABCDE的頂點(diǎn)A為圓心,AE為半徑作圓弧交BA的延長線于點(diǎn)A′,再以點(diǎn)B為圓心,BA′為半徑作圓弧交CB的延長線于B′,依次進(jìn)行.得到螺旋線,再順次連結(jié)EA′,AB′,BC′,CD′,DE′,得到5塊陰影區(qū)域,若記它們的面積分別為S1S2,S3,S4S5,且滿足S5S21,則S4S3的值為( 。

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案