【題目】如圖,四邊形ABCD中,AC平分∠BAD,∠ADC=∠ACB=90°,E為AB的中點,AC與DE交于點F.
(1)求證:CE∥AD;
(2)求證:AC2=ABAD;
(3)若AC=2,AB=4,求的值.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)欲證明CE∥AD,只要證明∠ACE=∠CAD即可;
(2)由AC平分∠DAB得∠DAC=∠CAB,加上∠ADC=∠ACB=90°,可證△ADC∽△ACB,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;
(3)先求AD的長,CE的長,通過證明△AFD∽△CFE,可得.
證明:(1)∵E為AB中點,∠ACB=90°
∴CE=AB=AE,
∴∠EAC=∠ECA,
∵∠DAC=∠CAB,
∴∠DAC=∠ECA,
∴CE∥AD;
(2)證明:∵AC平分∠DAB,
∴∠DAC=∠CAB,
∵∠ADC=∠ACB=90°,
∴△ADC∽△ACB,
∴,
∴AC2=ABAD;
(3)由(2)證得,AC2=ABAD,
∵AC=2,AB=4,
∴12=4AD,
∴AD=3,
∵∠ACB=90°,E為AB的中點,
∴CE=AB=2,
∵CE∥AD
∴△AFD∽△CFE,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展演講比賽活動,九(1)、九(2)班根據(jù)初賽成績各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績(滿分為100分)如圖所示.
(1)根據(jù)圖填寫下表;
平均分 (分) | 中位數(shù) (分) | 眾數(shù)(分) | 極差 | 方差 | |
九(1)班 | 85 | ______ | 85 | ______ | 70 |
九(2)班 | 85 | 80 | ______ | ______ | ______ |
(2)結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù)、極差、方差,分析哪個班級的復(fù)賽成績較好?
(3)如果在每班參加復(fù)賽的選手中分別選出2人參加決賽,你認為哪個班的實力更強一些,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2+x﹣4與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,作直線AC.
(1)如圖1,點P是直線AC下方拋物線上的一點,連結(jié)PA,PC.過點P作PD⊥AC于點D,交y軸于點M,E是射線PD上的一點,Q是x軸上的一點,F是y軸上的一點,過F作該拋物線對稱軸的垂線段,垂足為點G,連結(jié)EF,GQ.當(dāng)△PAC面積最大時,求點P的坐標(biāo),并求EF+GQ+(FG+QA)的最小值;
(2)如圖2,在(1)的條件下,將△CDM繞點D旋轉(zhuǎn)得到△C'DM',在旋轉(zhuǎn)過程中,當(dāng)點C'或點M′落在y軸上(不與點M、C重合)時,將△C'DM'沿射線PD平移得到△C″D'M″,在平移過程中,平面內(nèi)是否存在點N,使得四邊形OM″NC″是菱形?若存在,請直接寫出所有符合條件的點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC=2,取BC邊中點E,作ED∥AB,EF∥AC,得到四邊形EDAF,它的面積記作S1;取BE中點E1,作E1D1∥FB,E1F1∥EF,得到四邊形E1D1FF1,它的面積記作S2,照此規(guī)律作下去,則S1=_______,S2017=____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象相交于A,B兩點,點A的坐標(biāo)為(﹣1,3),點B的坐標(biāo)為(3,n).
(1)求這兩個函數(shù)的表達式;
(2)點P在線段AB上,且S△APO:S△BOP=1:3,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某化工廠要在規(guī)定時間內(nèi)搬運1200噸化工原料.現(xiàn)有,兩種機器人可供選擇,已知型機器人比型機器人每小時多搬運30噸型,機器人搬運900噸所用的時間與型機器人搬運600噸所用的時間相等.
(1)求兩種機器人每小時分別搬運多少噸化工原料.
(2)該工廠原計劃同時使用這兩種機器人搬運,工作一段時間后,型機器人又有了新的搬運任務(wù)需離開,但必須保證這批化工原料在11小時內(nèi)全部搬運完畢.問型機器人至少工作幾個小時,才能保證這批化工原料在規(guī)定的時間內(nèi)完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代著名數(shù)學(xué)著作,書中記載:“今有圓材,埋在壁中,不知大小以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用數(shù)學(xué)語言可表述為:“如圖,CD為⊙O的直徑,弦AB⊥DC于E,ED=1寸,AB=10寸,求直徑CD的長.”則CD=_______寸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)了一元二次方程的根與系數(shù)的關(guān)系后,小亮興奮地說:“若設(shè)一元二次方程的兩個根為,由根與系數(shù)的關(guān)系有,,由此就能快速求出,,···的值了. 比如設(shè)是方程的兩個根,則,,得.
小亮的說法對嗎?簡要說明理由;
寫一個你最喜歡的元二次方程,并求出兩根的平方和;
已知是關(guān)于的方程的一個根,求方程的另一個根與的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com