【題目】如圖1,在中,,于點(diǎn)D,將繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得到

如圖2,當(dāng)時(shí),求點(diǎn)C、E之間的距離;

在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)AE、F三點(diǎn)共線時(shí),求AF的長(zhǎng);

連結(jié)AF,記AF的中點(diǎn)為P,請(qǐng)直接寫出線段CP長(zhǎng)度的最小值.

【答案】1CE;(2AF的長(zhǎng)為+;(3CP的最小值=OCOP2

【解析】

1)只要證明∠CBE90°,求出BE,BC利用勾股定理即可解決問題.

2)分兩種情形畫出圖形分別求解即可.

3)如圖3中,取AB的中點(diǎn)O,連接OP,CO.利用三角形的中位線定理可得OP ,推出點(diǎn)P的運(yùn)動(dòng)軌跡是以O為圓心 為半徑的圓,由此即可解決問題.

解:(1)如圖1中,

RtABC中,∵∠ACB90°,∠ABC30°,AC2,

AB2AC4,BC 2

CDAB,

ABCD ACBC,

CD ,

BDBE 3,

∵∠ABEα60°,

∴∠CBE30°+60°90°

CE

2)如圖21中,

AF,E三點(diǎn)共線,

∴∠AEB90°,AE ,

AFAEEF

如圖22中,

當(dāng)A,E,F共線時(shí),∠AEB90°,AE

AFAE+EF+

綜上所述,AF的長(zhǎng)為+

3)如圖3中,取AB的中點(diǎn)O,連接OPCO

AOOB,APPF

OP BFBC,

∴點(diǎn)P的運(yùn)動(dòng)軌跡是以O為圓心為半徑的圓,

OC AB2,

CP的最小值=OCOP2

故答案為:(1CE ;(2AF的長(zhǎng)為+;(3CP的最小值=OCOP2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)對(duì)寧波市相關(guān)的市場(chǎng)物價(jià)調(diào)研,某批發(fā)市場(chǎng)內(nèi)甲種水果的銷售利潤(rùn)y1(千元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系y1=0.25x,乙種水果的銷售利潤(rùn)y2(千元)與進(jìn)貨量x(噸)之間的函數(shù)y2=ax2+bx+c的圖象如圖所示.

(1)求出y2x之間的函數(shù)關(guān)系式;

(2)如果該市場(chǎng)準(zhǔn)備進(jìn)甲、乙兩種水果共8噸,設(shè)乙水果的進(jìn)貨量為t噸,寫出這兩種水果所獲得的銷售利潤(rùn)之和W(千元)與t(噸)之間的函數(shù)關(guān)系式,并求出這兩種水果各進(jìn)多少噸時(shí)獲得的銷售利潤(rùn)之和最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A2,4),B11),C4,3).

1)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);

2)請(qǐng)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2;

3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過的路徑長(zhǎng)(記過保留根號(hào)和π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點(diǎn)”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個(gè)最想去的景點(diǎn),下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

(1)求被調(diào)查的學(xué)生總?cè)藬?shù);

(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);

(3)若該校共有800名學(xué)生,請(qǐng)估計(jì)“最想去景點(diǎn)B“的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知,,點(diǎn)PAB邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)E、F分別是CACB邊的中點(diǎn),過點(diǎn)PD,設(shè),圖中某條線段的長(zhǎng)為y,如果表示yx的函數(shù)關(guān)系的大致圖象如圖2所示,那么這條線段可能是

A. PDB. PEC. PCD. PF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線m:y=ax2+b(a<0,b>0)與x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.將拋物線m繞點(diǎn)B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點(diǎn)為C1,與x軸的另一個(gè)交點(diǎn)為A1.若四邊形AC1A1C為矩形,則a,b應(yīng)滿足的關(guān)系式為( 。

A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,以RtABCAC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,作OFABBC于點(diǎn)F,連接EF

1)求證:OFCE;

2)求證:EF是⊙O的切線;

3)若⊙O的半徑為3,∠EAC60°,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),yx的增大而增大,且-2≤x≤1時(shí),y的最大值為9,則a的值為  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】朗讀者自開播以來,以其厚重的文化底蘊(yùn)和感人的人文情懷,感動(dòng)了數(shù)以億計(jì)的觀眾,岳池縣某中學(xué)開展朗讀比賽活動(dòng),九年級(jí)、班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)滿分為100如圖所示.

平均數(shù)

中位數(shù)

眾數(shù)

85

85

80

根據(jù)圖示填寫表格;

結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好;

如果規(guī)定成績(jī)較穩(wěn)定班級(jí)勝出,你認(rèn)為哪個(gè)班級(jí)能勝出?說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案