【題目】如圖,∠1和∠2互補,∠C=EDF.

(1)判斷DFEC的關(guān)系為   

(2)試判斷DEBC的關(guān)系,并說明理由.

(3)試判斷∠DEC與∠DFC的關(guān)系并說明理由.

【答案】(1)DF∥EC;(2)DE∥BC,理由見解析;(3)∠DEC=∠DFC,理由見解析.

【解析】

(1)依據(jù)∠1和∠2互補,即可得到DF∥EC;
(2)依據(jù)DF∥EC,可得∠C+∠CFD=180°,再根據(jù)∠C=∠EDF,即可得到∠EDF+∠DFC=180°,進(jìn)而得出DE∥BC;
(3)依據(jù)DE∥BC,DF∥EC,即可得到∠DEC+∠C=180°,∠DFC+∠C=180°,進(jìn)而得出∠DEC=∠DFC.

1)∵∠1和∠2互補,

DFEC(同旁內(nèi)角互補,兩直線平行),

故答案為:DFEC;

(2)DEBC,理由:

DFEC,

∴∠C+CFD=180°,

又∵∠C=EDF,

∴∠EDF+DFC=180°,

DECF,

DEBC;

(3)DEC=DFC,理由:

DEBC,DFEC,

∴∠DEC+C=180°,DFC+C=180°,

∴∠DEC=DFC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度數(shù).

(2)上題中若∠B=40°,∠C=80°改為∠C>∠B,其他條件不變,請你求出∠EAD與∠B、∠C之間的數(shù)列關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A,∠B均為銳角,且sinA= , cosB= , AC=40,則△ABC的面積是(  )
A.800
B.800
C.400
D.400

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,將長方形紙片的一角作折疊,使頂點A落在A′處,EF為折痕,若EA′恰好平分∠FEB,求∠FEB的度數(shù).

(2)如圖,A地和B地都是海上觀測站,從A地發(fā)現(xiàn)它的北偏東60方向有一艘船P,同時,從B地發(fā)現(xiàn)這艘船P在它北偏東30方向.試在圖中畫出這艘船P的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,已知AB=AC,BAC=90°,E為邊AC上一點,連接BE.

(1)如圖1,若ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;

(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AFBE交BC于點F,過點F作FGCD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在升旗結(jié)束后,小銘想利用所學(xué)數(shù)學(xué)知識測量學(xué)校旗桿高度,如圖,旗桿的頂端垂下一繩子,將繩子拉直釘在地上,末端恰好至C處且與地面成60°角,小銘從繩子末端C處拿起繩子后退至E點,求旗桿AB的高度和小銘后退的距離.(單位:米,參考數(shù)據(jù):≈1.41,≈1.73,結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象過點P(﹣ ,0),且與反比例函數(shù)y= (m≠0)的圖象相交于點A(﹣2,1)和點B.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求點B的坐標(biāo),并根據(jù)圖象回答:當(dāng)x在什么范圍內(nèi)取值時,一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點CCF平分∠DCEDE于點F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案