【題目】山地自行車越來越受到中學生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價多少元?(列方程解答)
(2)該車行計劃今年新進一批A型車和B型車共60輛,A型車的進貨價為每輛1100元,銷售價與(1)相同;B型車的進貨價為每輛1400元,銷售價為每輛2000元,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應如何進貨才能使這批車獲利最多?
【答案】(1)今年A型車每輛售價1600元;(2)當新進A型車20輛,B型車40輛時,這批車獲利最大
【解析】
(1)設今年A型車每輛售價x元,則去年售價每輛為(x+400)元,由賣出的數(shù)量相同建立方程求出其解即可;
(2)設今年新進A型車a輛,則B型車(60-a)輛,獲利y元,由條件表示出y與a之間的關系式,由a的取值范圍就可以求出y的最大值.
解:(1)設今年A型車每輛售價x元,則去年售價每輛為(x+400)元,由題意,得
解得:x=1600,
經(jīng)檢驗,x=1600是原方程的根;
答:今年A型車每輛售價1600元;
(2)設今年新進A型車a輛,則B型車(60﹣a)輛,獲利y元,由題意,得
y=(1600﹣1100)a+(2000﹣1400)(60﹣a),
y=﹣100a+36000,
∵B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,
∴60﹣a≤2a,
∴a≥20.
∵k=﹣100<0,
∴y隨a的增大而減小.
∴a=20時,y最大=34000元.
∴B型車的數(shù)量為:60﹣20=40輛.
∴當新進A型車20輛,B型車40輛時,這批車獲利最大.
科目:初中數(shù)學 來源: 題型:
【題目】5G網(wǎng)絡,是最新一代蜂窩移動通信技術,其數(shù)據(jù)傳輸速率遠高于以前的蜂窩網(wǎng)絡,最高可達10Gbit/s,比4G快100倍.5G手機也成為生活、工作不可缺少的移動設備,某電商公司銷售兩種5G手機,已知售出5部A型手機,3部B型手機的銷售額為51000元;售出3部A型手機,2部B型手機的銷售額為31500元.
(1)求A型手機和B型手機的售價分別是多少元;
(2)該電商公司在3月實行“滿減促銷”活動,活動方案為:單部手機滿3000元減500元,滿5000元減1500元(每部手機只能參加最高滿減活動),結果3月A型手機的銷量是B型手機的,4月該電商公司加大促銷活動力度,每部A型手機按照3月滿減后的售價再降a%,銷量比3月增加2a%;每部B型手機按照滿減后的售價再降a%,銷量比3月銷量增加a%,結果4月的銷售總額比3月的銷售總額多a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國北斗導航裝備的不斷更新,極大方便人們的出行.某中學組織學生利用導航到C地進行社會實踐活動,到達A地時,發(fā)現(xiàn)C地恰好在 A地正北方向,導航顯示路線應沿北偏東60°方向走到B地,再沿北偏西37°方向走才能到達C地.如圖所示,已知A,B兩地相距6千米,則A,C兩地的距離為( ).(參考數(shù)據(jù)sin53°≈0.80,cos53°≈0.60)
A.12千米B.(3+4)千米C.(3+5)千米D.(12﹣4)千米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=3.點E在線段BA上從B點以每秒1個單位的速度出發(fā)向A點運動,F(xiàn)是射線CD上一動點,在點E、F運動的過程中始終保持EF=5,且CF>BE,點P是EF的中點,連接AP.設點E運動時間為ts.
(1)在點E、F運動的過程中,AP的長度存在一個最小值,當AP的長度取得最小值時,點P的位置應該在 .
(2)當AP⊥EF時,求出此時t的值
(3)以P為圓心作⊙P,當⊙P與矩形ABCD三邊所在直線都相切時,求出此時t的值,并指出此時⊙P的半徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為落實“美麗撫順”的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.
(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?
(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點E、F,CE=2,連CF,以下結論:①△ABF≌△CBF;②點E到AB的距離是;③△ADF與△EBF的面積比為3:2,④△ABF的面積為,其中一定成立的有( 。﹤.
A.2B.3C.1D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一邊長AB為4的矩形紙片折疊,使點D與點B重合,折痕為EF,若EF=2,則矩形的面積為( 。
A.32B.28C.30D.36
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB為鈍角,把邊AC繞點A沿逆時針方向旋轉90°得AD,把邊BC繞點B沿順時針方向旋轉90°得BE,作DM⊥AB于點M,EN⊥AB于點N,若AB=5,EN=2,則DM=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(6分)如圖,菱形ABCD的對角線AC,BD相交于點O,分別延長OA,OC到點E,F,使AE=CF,依次連接B,F,D,E各點.
(1)求證:△BAE≌△BCF;
(2)若∠ABC=50°,則當∠EBA= °時,四邊形BFDE是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com