【題目】在平面直角坐標系中,△ABC的位置如圖所示(小方格是邊長1個單位長度的正方形).

1)將△ABC沿軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;并寫出A1的坐標;

2)畫出△A2B2C2,使得△ABC和△A2B2C2關于原點O中心對稱;并寫出C2的坐標;

【答案】1A1(-5,1),圖見解析,(2C2(-5,-1),圖見解析.

【解析】

1)利用點平移的坐標變換規(guī)律寫出、、的坐標,然后描點即可得到

2)利用關于原點對稱的點的坐標特征寫出、、的坐標,然后描點即可得到

解:(1)如圖,為所作;由圖可知,A的坐標為(1,1),

A1的坐標為(-5,1),

2)如圖,為所作;由圖可知,C的坐標(5,1),

C點關于原點對稱的點C2的坐標(-5,-1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】河南開封的西瓜個大瓤紅且甜,全國知名某瓜農(nóng)準備從某貨運公司租用大小兩種型號的貨車運輸西瓜到外地銷售,已知一輛大型貨車和一輛小型貨車每次共運10噸;兩輛大型貨車和三輛小型渣貨車每次共運24噸.

求一輛大型貨車和一輛小型貨車每次各運西瓜多少噸?

已知一輛大型貨車運輸花費為400次,一輛小型貨車運輸花費為300次,計劃用20輛貨車運輸,且每次運輸西瓜總重量不少于96噸,如何安排才能使每次運費最低,最低費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了傳承優(yōu)秀傳統(tǒng)文化,我市組織了一次初三年級1200名學生參加的“漢字聽寫”大賽,為了更好地了解本次大賽的成績分布情況,隨機抽取了100名學生的成績(滿分50分),整理得到如下的統(tǒng)計圖表:

成績(分)

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

人 數(shù)

1

2

3

3

6

7

5

8

15

9

11

12

8

6

4

成績分組

頻數(shù)

頻率

35≤x<38

3

0.03

38≤x<41

a

0.12

41≤x<44

20

0.20

44≤x<47

35

0.35

47≤x≤50

30

b

請根據(jù)所提供的信息解答下列問題∶

(1)樣本的中位數(shù)是 分;

(2)頻率統(tǒng)計表中a b ;

(3)請補全頻數(shù)分布直方圖;

(4)請根據(jù)抽樣統(tǒng)計結(jié)果,估計該次大賽中成績不低于41分的學生有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為1,點P是AD邊上的一個動點,點A關于直線BP的對稱點是點Q,連接PQ、DQ、CQ、BQ,設AP=x.

(1)BQ+DQ的最小值是_______,此時x的值是_______;

(2)如圖,若PQ的延長線交CD邊于點E,并且CQD=90°

求證:點E是CD的中點; 求x的值.

(3)若點P是射線AD上的一個動點,請直接寫出當CDQ為等腰三角形時x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列一元二次方程:

(1)2x2﹣5x﹣1=0(用配方法解);(2)(2x﹣5)2=9(x+4)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題

某中學組織七年級師生去春游,一人一座,如果單租45座客車若干輛,則剛好坐滿;如果單租60座的客車,則少租一輛,且余15個座位.

1)求參加春游的師生總?cè)藬?shù).

2)已知一輛45座客車的租金每天250元,一輛60座客車的租金每天300元,問單租哪種客車省錢?

3)如果同時租用這兩種客車,那么兩種客車分別租多少輛最省錢?(只寫出租車方案即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為正方形ABCD對角線上一點,以點O為圓心,OA長為半徑的⊙OBC相切于點E.

(1)求證:CD是⊙O的切線;

(2)若正方形ABCD的邊長為10,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l與⊙O相離,OA⊥l于點A,OA=5,OA與⊙O相交于點P,AB與⊙O相切于點B,BP的延長線交直線l于點C.

(1)試判斷線段AB與AC的數(shù)量關系,并說明理由;

(2)若PC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖:反比例函數(shù)y=的圖象經(jīng)過點A(﹣3,b)過點Ax軸的垂線,垂足為B,SAOB=3.

(1)求k,b的值;

(2)若一次函數(shù)y=ax+1的圖象經(jīng)過點A,且與x軸交于M,求AM的長.

查看答案和解析>>

同步練習冊答案