【題目】下列命題正確的有(  )

①如果等腰三角形的底角為15°,那么腰上的高是腰長的一半;

②三角形至少有一個內(nèi)角不大于60°

③連結(jié)任意四邊形各邊中點形成的新四邊形是平行四邊形;

④十邊形內(nèi)角和為1800°

A.1B.2C.3D.4

【答案】C

【解析】

利用等腰三角形的性質(zhì)、三角形的三邊關(guān)系、中點四邊形及多邊形的內(nèi)角和的知識進行判斷后即可確定正確的選項.

①如果等腰三角形的底角為15°,那么腰上的高是腰長的一半,正確,

證明如下:如圖:

∵∠B=∠ACB15°,

∴∠CAB150°,

∴∠CAD30°,CDAB

∴在直角三角形ACD中,CDAC;

②因為三角形的內(nèi)角和等于180°,所以一個三角形中至少有一個內(nèi)角不大于60°,所以三角形至少有一個內(nèi)角不大于60°正確;

③連結(jié)任意四邊形各邊中點形成的新四邊形是平行四邊形,正確,

證明如下:

如圖,連接AC,

E、F、G、H分別是四邊形ABCD邊的中點,

HGAC,HGAC,EFAC,EFAC;

EFHGEFHG;

∴四邊形EFGH是平行四邊形.

故答案是:平行四邊形.;

④十邊形內(nèi)角和為(102×1801440°,故錯誤,

正確有3個,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°AD平分∠BAC,與BC相交于點F,過點BBEAD于點D,交AC延長線于點E,過點CCHAB于點H,交AF于點G,則下列結(jié)論:;正確的有( )個.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,某數(shù)學(xué)活動小組為測量學(xué)校旗桿AB的高度,從旗桿正前方2m處的點C出發(fā)沿斜面坡度i=1的斜坡CD前進4m到達點D,在點D處安置測角儀測得旗桿頂部A的仰角為37°,量得儀器的高DE1.5 m.已知A,B,C,D,E在同一平面內(nèi)ABBC,ABDE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,計算結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,∠A=90°,BD=BC,點ECD的中點,射線BEAD的延長線于點F,連接CF

(1)求證:四邊形BCFD是菱形;

(2)若AD=1,BC=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應(yīng)關(guān)系如下圖所示.下列敘述正確的是(

A. 兩人從起跑線同時出發(fā),同時到達終點

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇前15s跑過的路程大于小林前15s跑過的路程

D. 小林在跑最后100m的過程中,與小蘇相遇2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形OABC中,點B的坐標是(4,4),點E、F分別在邊BC、BA上,OE2.若∠EOF45°,則F點的縱坐標是( 。

A.1B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列解答中,填寫適當?shù)睦碛苫驍?shù)學(xué)式:

1)∵ADBE,(已知)

∴∠B=∠.   

2)∵∠E+  180°,(已知)

ACDE  

3)∵  ,(已知)

∴∠ACB=∠DAC   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,直線CD與⊙O相切于點C,且與AB的延長線交于點E.點C是弧BF的中點.

(1)求證:ADCD

(2)若∠CAD=30°.⊙O的半徑為3,一只螞蟻從點B出發(fā),沿著BE--EC--CB爬回至點B,求螞蟻爬過的路程(π≈3.14,≈1.73,結(jié)果保留一位小數(shù).)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為﹣6,點B在數(shù)軸上A點右側(cè),且AB14,動點M從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為tt0)秒.

1)寫出數(shù)軸上點B表示的數(shù)   ,點M表示的數(shù)   (用含t的式子表示);

2)動點N從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,若點M,N同時出發(fā),問點M運動多少秒時追上點N?

3)若PAM的中點,FMB的中點,點M在運動過程中,線段PF的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段PF的長.

查看答案和解析>>

同步練習(xí)冊答案