如圖1,在直角坐標(biāo)系xoy中,O是坐標(biāo)原點(diǎn),點(diǎn)A在x正半軸上,OA=12cm,點(diǎn)B在y軸的正半軸上,OB=12cm,動(dòng)點(diǎn)P從點(diǎn)O開始沿OA以2cm/s的速度向點(diǎn)A移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A開始沿AB以4cm/s的速度向點(diǎn)B移動(dòng),動(dòng)點(diǎn)R從點(diǎn)B開始沿BO以2cm/s的速度向點(diǎn)O移動(dòng).如果P、Q、R分別從O、A、B同時(shí)移動(dòng),移動(dòng)時(shí)間為t(0<t<6)s.

1.求∠OAB的度數(shù)

2.以O(shè)B為直徑的⊙O′與AB交于點(diǎn)M,當(dāng)t為何值時(shí),PM與⊙O′相切?

3.是否存在△RPQ為等腰三角形?若存在,請(qǐng)直接寫出t值;若不存在,請(qǐng)說明理由.

 

 

1.在Rt△AOB中,tan∠OAB===,∴∠OAB=30°  …2分

2.如圖,連結(jié)O′P,O′M.

當(dāng)PM與⊙O′相切時(shí),有∠PMO′=∠POO′=90°,△PMO′≌△POO′  …………3分

由(1)知∠OBA=60°

∵O′M= O′B,∴△O′BM是等邊三角形,∴∠B O′M=60°

可得∠OO′P=∠MO′P=60°

∴OP=OO′·tan∠O O′P=6×tan60°=6  …………5分

又∵OP=2t,∴2t=6,t=3

即:t=3時(shí),PM與⊙O′相切.  …………6分

3.PR2=16t2-48t+144,PQ2=52t2-288t+432,RQ2=28t2-240t+576.

當(dāng)PR=RQ時(shí),可得t=8-2(t=8+2舍去);

當(dāng)PR=PQ時(shí),可得t=;

當(dāng)PQ=RQ時(shí),可得t=1+(t=1-舍去).

綜上,當(dāng)t為8-2,,1+時(shí),△RPQ為等腰三角形.  ……10分(注:4個(gè)結(jié)果每個(gè)1分)

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在直角坐標(biāo)系中,反比例函數(shù)y=
kx
(k>0)
的圖象與矩形AOBC的邊AC、BC分別相交于點(diǎn)E、F,且點(diǎn)C坐標(biāo)為(4,3),將△CEF沿EF對(duì)折后,C點(diǎn)恰好落在OB上.
(1)求k的值;
(2)如圖2,在直角坐標(biāo)系中,P點(diǎn)坐標(biāo)為(2,-3),請(qǐng)?jiān)陔p曲線上找兩點(diǎn)M、N,使四邊形OPMN是平行四邊形,求M、N的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•達(dá)州)如圖1,在直角坐標(biāo)系中,已知點(diǎn)A(0,2)、點(diǎn)B(-2,0),過點(diǎn)B和線段OA的中點(diǎn)C作直線BC,以線段BC為邊向上作正方形BCDE.
(1)填空:點(diǎn)D的坐標(biāo)為
(-1,3)
(-1,3)
,點(diǎn)E的坐標(biāo)為
(-3,2)
(-3,2)

(2)若拋物線y=ax2+bx+c(a≠0)經(jīng)過A、D、E三點(diǎn),求該拋物線的解析式.
(3)若正方形和拋物線均以每秒
5
個(gè)單位長(zhǎng)度的速度沿射線BC同時(shí)向上平移,直至正方形的頂點(diǎn)E落在y軸上時(shí),正方形和拋物線均停止運(yùn)動(dòng).
①在運(yùn)動(dòng)過程中,設(shè)正方形落在y軸右側(cè)部分的面積為s,求s關(guān)于平移時(shí)間t(秒)的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍.
②運(yùn)動(dòng)停止時(shí),求拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在Rt△OAB中,∠B=90°,AO=
12
,BA=2.把△OAB按如圖方式放置在直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,點(diǎn)A落在x軸正半軸上.求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(a,0),B點(diǎn)的坐標(biāo)為(0,b),且a、b滿足
a-b
+
a2-144
a+12
=0

(1)求證:∠OAB=∠OBA.
(2)如圖2,△OAB沿直線AB翻折得到△ABM,將OA繞點(diǎn)A旋轉(zhuǎn)到AF處,連接OF,作AN平分∠MAF交OF于N點(diǎn),連接BN,求∠ANB的度數(shù).
(3)如圖3,若D(0,4),EB⊥OB于B,且滿足∠EAD=45°,試求線段EB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC在直角坐標(biāo)系中,
(1)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到△A1B1C1,寫出A1、B1、C1的坐標(biāo)
(2)求出三角形ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案