【題目】如圖,AB為⊙O直徑,C為⊙O上一點(diǎn),點(diǎn)D是 的中點(diǎn),DE⊥AC于E,DF⊥AB于F.
(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OF=4,求AC的長度.

【答案】
(1)解:DE與⊙O相切.

證明:連接OD、AD,

∵點(diǎn)D是 的中點(diǎn),

= ,

∴∠DAO=∠DAC,

∵OA=OD,

∴∠DAO=∠ODA,

∴∠DAC=∠ODA,

∴OD∥AE,

∵DE⊥AC,

∴DE⊥OD,

∴DE與⊙O相切


(2)解:連接BC交OD于H,延長DF交⊙O于G,

由垂徑定理可得:OH⊥BC, = = ,

= ,

∴DG=BC,

∴弦心距OH=OF=4,

∵AB是直徑,

∴BC⊥AC,

∴OH∥AC,

∴OH是△ABC的中位線,

∴AC=2OH=8.


【解析】(1)先連接OD、AD,根據(jù)點(diǎn)D是 的中點(diǎn),得出∠DAO=∠DAC,進(jìn)而根據(jù)內(nèi)錯角相等,判定OD∥AE,最后根據(jù)DE⊥OD,得出DE與⊙O相切;(2)先連接BC交OD于H,延長DF交⊙O于G,根據(jù)垂徑定理推導(dǎo)可得OH=OF=4,再根據(jù)AB是直徑,推出OH是△ABC的中位線,進(jìn)而得到AC的長是OH長的2倍.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用三角形中位線定理和垂徑定理的相關(guān)知識可以得到問題的答案,需要掌握連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行了一次體育科目測試(把成績結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)求本次抽樣測試的學(xué)生人數(shù);
(2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該市九年級共有學(xué)生9000名,如果全部參加這次體育測試,則測試等級為D的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的周長是26cm,對角線AC與BD交于點(diǎn)O,AC⊥AB,E是BC中點(diǎn),△AOD的周長比△AOB的周長多3cm,則AE的長度為(
A.3cm
B.4cm
C.5cm
D.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條直線上任取一點(diǎn)A,截取AB=20 cm,再截取AC=18 cm,M,N分別是AB,AC的中點(diǎn),求M,N兩點(diǎn)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線SN與直線WE相交于點(diǎn)O,射線ON表示正北方向,射線OE表示正東方向.已知射線OB的方向是南偏東,射線OC的方向是北偏東,且的角與的角互余.

(1)①若m=50,則射線OC的方向是________;

②圖中與∠BOE互余的角有__________,與∠BOE互補(bǔ)的角有__________

(2)若射線OA是∠BON的平分線,則∠BOS與∠AOC是否存在確定的數(shù)量關(guān)系?如果存在,請寫出你的結(jié)論以及計(jì)算過程;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以菱形ABCD對角線交點(diǎn)為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,A、B兩點(diǎn)的坐標(biāo)分別為(﹣2 ,0)、(0,﹣ ),直線DE⊥DC交AC于E,動點(diǎn)P從點(diǎn)A出發(fā),以每秒2個單位的速度沿著A→D→C的路線向終點(diǎn)C勻速運(yùn)動,設(shè)△PDE的面積為S(S≠0),點(diǎn)P的運(yùn)動時間為t秒.

(1)求直線DE的解析式;
(2)求S與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時,∠EPD+∠DCB=90°?并求出此時直線BP與直線AC所夾銳角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料并回答問題: 材料1:如果一個三角形的三邊長分別為a,b,c,記 ,那么三角形的面積為
古希臘幾何學(xué)家海倫(Heron,約公元50年),在數(shù)學(xué)史上以解決幾何測量問題而聞名.他在《度量》一書中,給出了公式①和它的證明,這一公式稱海倫公式.
我國南宋數(shù)學(xué)家秦九韶(約1202﹣﹣約1261),曾提出利用三角形的三邊求面積的秦九韶公式:
下面我們對公式②進(jìn)行變形: = = = = =
這說明海倫公式與秦九韶公式實(shí)質(zhì)上是同一公式,所以我們也稱①為海倫﹣﹣秦九韶公式.
問題:如圖,在△ABC中,AB=13,BC=12,AC=7,⊙O內(nèi)切于△ABC,切點(diǎn)分別是D、E、F.

(1)求△ABC的面積;
(2)求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】云南地區(qū)地震發(fā)生后,市政府籌集了必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車均滿載)

(1)若全部物資都用甲、乙兩種車型來運(yùn)送,需運(yùn)費(fèi)8200元,問分別需甲、乙兩種車型各幾輛?

(2)為了節(jié)省運(yùn)費(fèi),市政府打算用甲、乙、丙三種車型同時參與運(yùn)送,已知它們的總輛數(shù)為14輛,你能求出這三種車型分別有多少輛嗎?此時的運(yùn)費(fèi)又是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)-5,1,-3,5,-2中任取三個數(shù)相乘,其中最大的積是a,最小的積是b.

(1)a,b的值;

(2)|x+a|+|y-b|=0,求(x+y)÷(x-y)的值.

查看答案和解析>>

同步練習(xí)冊答案