【題目】如圖是一座人行天橋的引橋部分的示意圖,梯面AD、BE相互平行,且與地面成37°的夾角,DE是一段水平歇臺(tái),離地面高度3米.已知天橋高度BC4.8米,引橋水平跨度AC8米,求梯面ADBE及歇臺(tái)DE的長(zhǎng).(參考數(shù)據(jù):,結(jié)果保留兩位小數(shù))

【答案】5.00;3.00;1.60

【解析】

過分別點(diǎn)D、EDFACEGBC,垂足分別為點(diǎn)FG.解直角三角形ADF求得AD,AF,再解直角三角形BEG,得出BE、BG的長(zhǎng)即可得出DE的長(zhǎng).

解:過分別點(diǎn)D、EDFAC,EGBC,垂足分別為點(diǎn)F、G

Rt中,,DF=3

,

,

ADBE

Rt中,,BG=1.8

,

,

DE=AC-EG-AF=8-2.4-4=1.60

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3cmAD4cm,EF經(jīng)過對(duì)角線BD的中點(diǎn)O,分別交AD,BC于點(diǎn)EF

1)求證:△BOF≌△DOE;

2)當(dāng)EFBD時(shí),求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

概念理解:將△ABC 繞點(diǎn) A 按逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為 θ0°≤θ90°),并使各邊長(zhǎng)變?yōu)樵瓉淼?/span> n 倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],

問題解決:(2)如圖,在△ABC 中,∠BAC=30°,∠ACB=90°,對(duì)△ABC 作變換[θ,n]得到△AB′C′,使點(diǎn) BC,C′在同一直線上,且四邊形 ABBC′為矩形,求 θ n 的值.

拓廣探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,對(duì)△ABC作變換 得到△AB′C′,則四邊形 ABB′C′為正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON90°,A是∠MON內(nèi)部的一點(diǎn),過點(diǎn)AABON,垂足為點(diǎn)B,AB3厘米,OB4厘米,動(dòng)點(diǎn)EF同時(shí)從O點(diǎn)出發(fā),點(diǎn)E1.5厘米/秒的速度沿ON方向運(yùn)動(dòng),點(diǎn)F2厘米/秒的速度沿OM方向運(yùn)動(dòng),EFOA交于點(diǎn)C,連接AE,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時(shí),點(diǎn)F隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t0).

1)當(dāng)t1秒時(shí),EOFABO是否相似?請(qǐng)說明理由;

2)在運(yùn)動(dòng)過程中,不論t取何值時(shí),總有EFOA.為什么?

3)連接AF,在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使得SAEFS四邊形AEOF?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,∠ACB90°,∠CAB30°,以線段AB為邊向外作等邊△ABD,點(diǎn)E是線段AB的中點(diǎn)連接CE并延長(zhǎng)交線段AD于點(diǎn)F

1)求證四邊形BCFD為平行四邊形

2)若AB6,求平行四邊形BCFD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在中,,點(diǎn)分別是邊的中點(diǎn),連接

1)如圖①,求的值;

2)將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到如圖(2)的位置時(shí),的大小是否發(fā)生變化,若不變化,請(qǐng)說明理由;若發(fā)生變化,請(qǐng)求出它的值;

3)將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到直線的下方,且在同一直線上時(shí),如圖(3),求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(知識(shí)回顧)

七年級(jí)學(xué)習(xí)代數(shù)式求值時(shí),遇到這樣一類題“代數(shù)式axy+6+3x5y1的值與x的取值無關(guān),求a的值”,通常的解題方法是把x、y看作字母,a看作系數(shù)合并同類項(xiàng),因?yàn)榇鷶?shù)式的值與x的取值無關(guān),所以含x項(xiàng)的系數(shù)為0,即原式=(a+3x6y+5,所以a+30,則a=﹣3

(理解應(yīng)用)

1)若關(guān)于x的多項(xiàng)式(2x3m+2m23x的值與x的取值無關(guān),試求m的值;

2)若一次函數(shù)y2kx+14k的圖象經(jīng)過某個(gè)定點(diǎn),則該定點(diǎn)坐標(biāo)為   ;

(能力提升)

37張如圖1的小長(zhǎng)方形,長(zhǎng)為a,寬為b.按照?qǐng)D2方式不重疊地放在大矩形ABCD內(nèi),大矩形中未被覆蓋的兩個(gè)部分(圖中陰影部分),設(shè)右上角的面積為S1,左下角的面積為S2,當(dāng)AB的長(zhǎng)變化時(shí),S1S2的值始終保持不變.求ab的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,),以原點(diǎn)O為中心,將點(diǎn)A順時(shí)針旋轉(zhuǎn)150°得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)為( )

A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(已知二次函數(shù)y=ax2+bx+c(a0)的圖象如圖所示,下列結(jié)論:①abc0;2a+b0;b2﹣4ac0;a﹣b+c0,其中正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案