【題目】如圖,正方形ABCD,點P是對角線AC上一點,連結(jié)BP,過P作PQ⊥BP,PQ交CD于Q,若AP=4,CQ=10,則正方形ABCD的面積為 .
【答案】324
【解析】
試題分析:作PM⊥BC于點M,PN⊥CD于點N,利用正方形的性質(zhì)和角平分線上的點到角的兩邊相等以及已知條件即可證明△BPM≌△QPN,得出BM=QN,設(shè)BM=x,則NF=x,PM=CM=CN=10+x,根據(jù)平行線分線段成比例定理即可得到關(guān)于x的比例式,求出x的值,即可求出正方形的邊長,進(jìn)而求出其面積.
解:作PM⊥BC于點M,PN⊥CD于點N,如圖所示:
∵四邊形ABCD是正方形,
∴AC平分∠BCD,
∴PM=PN,∠NEM=90°,
∴四邊形PMCN為正方形,∵PQ⊥BP,∴∠BPQ=90°,
∴∠BPM=∠NPQ,
在△BPM和△QPN中,,
∴△BPM≌△QPN(AAS),
∴BM=QN;
設(shè)BM=x,則NF=x,
∴PM=CM=CN=10+x,
∴CP=(10+x),
∵PM∥AB,
∴,即,
解得:x=4或x=﹣10(舍),
∴BM=4,CM=14,
∴BC=BM+CM=18,
∴正方形ABCD的面積為:18×18=324.
故答案為:324.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知tan∠EOF=2,點C在射線OF上,OC=12.點M是∠EOF內(nèi)一點,MC⊥OF于點C,MC=4.在射線CF上取一點A,連結(jié)AM并延長交射線OE于點B,作BD⊥OF于點D.
(1)當(dāng)AC的長度為多少時,△AMC和△BOD相似;
(2)當(dāng)點M恰好是線段AB中點時,試判斷△AOB的形狀,并說明理由;
(3)連結(jié)BC.當(dāng)S△AMC=S△BOC時,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連接PC交AB于點E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關(guān)系,并說明理由;
(2)若:=1:2,求AE:EB:BD的值(請你直接寫出結(jié)果);
(3)若點C是弧AB的中點,已知AB=4,求CECP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m,n是關(guān)于x的一元二次方程x2﹣3x+a=0的兩個解,若(m﹣1)(n﹣1)=﹣6,則a的值為( )
A.﹣10 B.4 C.﹣4 D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店今年1﹣6月份經(jīng)營A、B兩種電子產(chǎn)品,已知A產(chǎn)品每個月的銷售數(shù)量y(件)與月份x(1≤x≤6且x為整數(shù))之間的關(guān)系如表今年1﹣6月份經(jīng)營A、B兩種電子產(chǎn)品,已知A產(chǎn)品 每個月的銷售數(shù)量y(件)與月份x(1≤x≤6且x為整數(shù))之間的關(guān)系如表
x 1 2 3 4 5 6
y 600 300 200 150 120 100
A產(chǎn)品每個月的售價z(元)與月份x之間的函數(shù)關(guān)系式為:z=10x,已知B產(chǎn)品每個月的銷售數(shù)量m(件)與月份x之間的關(guān)系為:m=﹣2x+62,B產(chǎn)品每個月的售價n(元)與月份x存在如圖所示的變化趨勢.
(1)請觀察題中表格,用所學(xué)過的一次函數(shù)或反比例函數(shù)的有關(guān)知識,直接寫出y與x的函數(shù)關(guān)系式
(2)請觀察如圖所示的變化趨勢,求出n與x的函數(shù)關(guān)系式
(3)求出此商店1﹣6月份經(jīng)營A、B兩種電子產(chǎn)品的銷售總額w與月份x之間的函數(shù)關(guān)系式
(4)今年7月份,商店調(diào)整了A、B兩種電子產(chǎn)品產(chǎn)品的價格,A產(chǎn)品價格在6月份基礎(chǔ)上增加a%,B產(chǎn)品價格在6月份基礎(chǔ)上減少a%,結(jié)果7月份A產(chǎn)品的銷售數(shù)量比6月份減少2a%,B產(chǎn)品的銷售數(shù)量比6月份增加2a%,若調(diào)整價格后7月份的銷售總額比6月份的銷售總額少2000元,請根據(jù)以下參考數(shù)據(jù)估算a的值.(參考數(shù)據(jù):6.32=39.69,6.42=40.91,6.52=42.25,6.62=43.56)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點E,過點E作MN∥BC交AB于M,交AC于N,若BM+CN=10,則線段MN的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿EF折疊后.點D與點B重合,點C落在點C′的位置上.若∠1=60°,AE=1.
(1)求∠2、∠3的度數(shù);
(2)求長方形紙片ABCD的面積S.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com