【題目】如圖,已知tan∠EOF=2,點(diǎn)C在射線OF上,OC=12.點(diǎn)M是∠EOF內(nèi)一點(diǎn),MC⊥OF于點(diǎn)C,MC=4.在射線CF上取一點(diǎn)A,連結(jié)AM并延長交射線OE于點(diǎn)B,作BD⊥OF于點(diǎn)D.
(1)當(dāng)AC的長度為多少時(shí),△AMC和△BOD相似;
(2)當(dāng)點(diǎn)M恰好是線段AB中點(diǎn)時(shí),試判斷△AOB的形狀,并說明理由;
(3)連結(jié)BC.當(dāng)S△AMC=S△BOC時(shí),求AC的長.
【答案】(1)2或8;(2)直角三角形,理由見解析;(3)18;
【解析】
試題分析:(1)由于∠MCA=∠BDO=Rt∠,所以△AMC和△BOD相似時(shí)分兩種情況:①△AMC∽△BOD;②△AMC∽△OBD.則兩種情況都可以根據(jù)相似三角形對(duì)應(yīng)邊的比相等及tan∠EOF=2列出關(guān)于AC的方程,解方程即可求出AC的長度;
(2)先由MC∥BD,得出△AMC∽△ABD,根據(jù)相似三角形對(duì)應(yīng)邊的比相等及三角形中位線的性質(zhì)求出BD=2MC=8,OD=4,CD=8,AC=CD=8,再利用SAS證明△AMC≌△BOD,得到∠CAM=∠DBO,根據(jù)平行線的性質(zhì)及三角形內(nèi)角和定理求出∠ABO=90°,進(jìn)而得出△ABO為直角三角形;
(3)設(shè)OD=a,根據(jù)tan∠EOF=2得出BD=2a,由三角形的面積公式求出S△AMC=2AC,S△BOC=12a,根據(jù)S△AMC=S△BOC,得到AC=6a.由△AMC∽△ABD,根據(jù)相似三角形對(duì)應(yīng)邊的比相等列出關(guān)于a的方程,解方程求出a的值,進(jìn)而得出AC的長.
解:(1)∵∠MCA=∠BDO=Rt∠,
∴△AMC和△BOD中,C與D是對(duì)應(yīng)點(diǎn),
∴△AMC和△BOD相似時(shí)分兩種情況:
①當(dāng)△AMC∽△BOD時(shí),=tan∠EOF=2,
∵MC=4,
∴=2,
解得AC=8;
②當(dāng)△AMC∽△OBD時(shí),=tan∠EOF=2,
∵MC=4,
∴=2,
解得AC=2.
故當(dāng)AC的長度為2或8時(shí),△AMC和△BOD相似;
(2)△ABO為直角三角形.理由如下:
∵MC∥BD,
∴△AMC∽△ABD,
∴,∠AMC=∠ABD,
∵M為AB中點(diǎn),
∴C為AD中點(diǎn),BD=2MC=8.
∵tan∠EOF=2,
∴OD=4,
∴CD=OC﹣OD=8,
∴AC=CD=8.
在△AMC與△BOD中,
,
∴△AMC≌△BOD(SAS),
∴∠CAM=∠DBO,
∴∠ABO=∠ABD+∠DBO=∠AMC+∠CAM=90°,
∴△ABO為直角三角形;
(3)連結(jié)BC,設(shè)OD=a,則BD=2a.
∵S△AMC=S△BOC,S△AMC=ACMC=2AC,S△BOC=OCBD=12a,
∴2AC=12a,
∴AC=6a.
∵△AMC∽△ABD,
∴,即,
解得a1=3,a2=﹣(舍去),
∴AC=6×3=18.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為有效開展陽光體育活動(dòng),云洱中學(xué)利用課外活動(dòng)時(shí)間進(jìn)行班級(jí)籃球比賽,每場比賽都要決出勝負(fù),每隊(duì)勝一場得2分,負(fù)一場得1分.已知九年級(jí)一班在8場比賽中得到13分,問九年級(jí)一班勝、負(fù)場數(shù)分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想從“天貓”某網(wǎng)店購買計(jì)算器,經(jīng)査詢,某品牌A號(hào)計(jì)算器的單價(jià)比B型號(hào)計(jì)算器的單價(jià)多10元,5臺(tái)A型號(hào)的計(jì)算器與7臺(tái)B型號(hào)的計(jì)算器的價(jià)錢相同,問A、B兩種型號(hào)計(jì)算器的單價(jià)分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句中真命題有( )
①點(diǎn)到直線的垂線段叫做點(diǎn)到直線的距離;②內(nèi)錯(cuò)角相等;③兩點(diǎn)之間線段最短;④過一點(diǎn)有且只有一條直線與已知直線平行;⑤在同一平面內(nèi),若兩條直線都與第三條直線垂直,則這兩條直線互相平行.
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,CD=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連結(jié)AG、CF.
(1)求證:①△ABG≌△AFG; ②求GC的長;
(2)求△FGC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一只不透明的盒子里有背面完全相同,正面上分別寫有數(shù)字1、2、3、4的四張卡片,小馬從中隨機(jī)地抽取一張,把卡片上的數(shù)字作為被減數(shù);在另一只不透明的盒子里將形狀、大小完全相同,分別標(biāo)有數(shù)字1、2、3的三個(gè)小球混合后,小虎從中隨機(jī)地抽取一個(gè),把小球上的數(shù)字做為減數(shù),然后計(jì)算出這兩個(gè)數(shù)的差.
(1)請(qǐng)你用畫樹狀圖或列表的方法,求這兩數(shù)差為0的概率;
(2)小馬與小虎做游戲,規(guī)則是:若這兩數(shù)的差為非正數(shù),則小馬贏;否則小虎贏.你認(rèn)為該游戲公平嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD,點(diǎn)P是對(duì)角線AC上一點(diǎn),連結(jié)BP,過P作PQ⊥BP,PQ交CD于Q,若AP=4,CQ=10,則正方形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商銷售一批電話手表,第一個(gè)月以550元/塊的價(jià)格售出60塊,第二個(gè)月起降價(jià),以500元/塊的價(jià)格將這批電話手表全部售出,銷售總額超過了5.5萬元.這批電話手表至少有( )
A.103塊 B.104塊 C.105塊 D.106塊
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com