【題目】直線y=x-6與x軸、y軸分別交于點A、B,點E從B點,出發(fā)以每秒1個單位的速度沿線段BO向O點移動(與B、O點不重合),過E作EF//AB,交x軸于F.將四邊形ABEF沿EF折疊,得到四邊形DCEF,設點E的運動時間為t秒.
(1)①直線y=x-6與坐標軸交點坐標是A(_____,______),B(______,_____);
②畫出t=2時,四邊形ABEF沿EF折疊后的圖形(不寫畫法);
(2)若CD交y軸于H點,求證:四邊形DHEF為平行四邊形;并求t為何值時,四邊形DHEF為菱形(計算結果不需化簡);
(3)連接AD,BC四邊形ABCD是什么圖形,并求t為何值時,四邊形ABCD的面積為36?
【答案】(1)①6,0,0,-6;②見詳解;(2)證明見詳解,當時,四邊形DHEF為菱形;(3)四邊形ABCD是矩形,當時,四邊形ABCD的面積為36.
【解析】
(1)①令求出x的值即可得到A的坐標,令求出y的值即可得到B的坐標;
②先求出t=2時E,F的坐標,然后找到A,B關于EF的對稱點,即可得到折疊后的圖形;
(2)先利用對稱的性質得出,然后利用平行線的性質和角度之間的關系得出,由此可證明四邊形DHEF為平行四邊形,要使四邊形DHEF為菱形,只要,利用,然后表示出EF,建立一個關于t的方程進而求解即可;
(3)AB和CD關于EF對稱,根據(jù)對稱的性質可知四邊形ABCD為平行四邊形,由(2)知,即可判斷四邊形ABCD的形狀,由,可知,建立關于四邊形ABCD面積的方程解出t的值即可.
(1)①令,則 ,解得 ,
∴ ;
令, 則,
∴;
②當t=2時, ,圖形如下:
(2)如圖,
∵四邊形DCEF與四邊形ABEF關于直線EF對稱,,
.
,
.
,
,
,
,
即軸,
,
∴四邊形DHEF為平行四邊形.
要使四邊形DHEF為菱形,只需,
,
,
.
又,
,
,
解得 ,
∴當時,四邊形DHEF為菱形;
(3)連接AD,BC,
∵AB和CD關于EF對稱,
∴ ,
∴四邊形ABCD為平行四邊形.
由(2)知,
.
,
,
∴四邊形ABCD為矩形.
∵ ,
.
,
,
∴四邊形ABCD的面積為 ,
解得,
∴當時,四邊形ABCD的面積為36.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,邊長為的等邊的項點都在軸上,頂點在第二象限內,經過平移或軸對稱或旋轉都可以得到.
(1)沿軸向右平移得到,則平移的距離是 個長度單位;與關于直線對稱,則對稱軸是 ,繞原點順時針方向旋轉得到,則旋轉角度至少是 度;
(2)連接,交于點,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小東根據(jù)學習一次函數(shù)的經驗,對函數(shù)y=|2x﹣1|的圖象和性質進行了探究.下面是小東的探究過程,請補充完成:
(1)函數(shù)y=|2x﹣1|的自變量x的取值范圍是 ;
(2)已知:
①當x=時,y=|2x﹣1|=0;
②當x>時,y=|2x﹣1|=2x﹣1
③當x<時,y=|2x﹣1|=1﹣2x;
顯然,②和③均為某個一次函數(shù)的一部分.
(3)由(2)的分析,取5個點可畫出此函數(shù)的圖象,請你幫小東確定下表中第5個點的坐標(m,n),其中m= ;n= ;:
x | … | ﹣2 | 0 |
| 1 | m | … |
y | … | 5 | 1 | 0 | 1 | n | … |
(4)在平面直角坐標系xOy中,作出函數(shù)y=|2x﹣1|的圖象;
(5)根據(jù)函數(shù)的圖象,寫出函數(shù)y=|2x﹣1|的一條性質.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,射線軸,直線交線段于點,交軸于點,是射線上一點.若存在點,使得恰為等腰直角三角形,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩座城市之間有一條高速公路,甲、乙兩輛汽車同時分別從這條路兩端的入口處駛入,并始終在高速公路上正常行駛.甲車駛往B城,乙車駛往A城,甲車在行駛過程中速度始終不變.甲車距B城高速公路入口處的距離y(千米)與行駛時間x(時)之間的關系如圖.
(1)求y關于x的表達式;
(2)已知乙車以60千米/時的速度勻速行駛,設行駛過程中,兩車相距的路程為s(千米).請直接寫出s關于x的表達式;
(3)當乙車按(2)中的狀態(tài)行駛與甲車相遇后,速度隨即改為a(千米/時)并保持勻速行駛,結果比甲車晚40分鐘到達終點,求乙車變化后的速度a.在下圖中畫出乙車離開B城高速公路入口處的距離y(千米)與行駛時間x(時)之間的函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小瑩用一張長方形紙片ABCD進行折紙,已知該紙片寬AB為8cm,BC長為10cm.當小瑩折疊時,頂點D落在BC邊上的點F處(折痕為AE).則此時EC=( )cm
A.4B.C.D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.利用正方形網絡可以畫出長度為無理數(shù)的線段,如圖1中.請參考此方法按下列要求作圖:
(1)在圖1中以格點為頂點畫一個面積為17的正方形,并標出字母;
(2)在圖2中以格點為頂點畫一個三角形,使,,,并標出字母;
(3)猜想是何種特殊三角形.并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為,C點的坐標為,點B在第一象限內,點P從原點出發(fā),以每秒2個單位長度的速度沿著的路線移動即:沿著長方形移動一周.
寫出點B的坐標______
當點P移動了4秒時,描出此時P點的位置,并求出點P的坐標.
在移動過程中,當點P到x軸距離為5個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AB=4,點E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點P是直線EF、GH之間任意一點,連接PE、PF、PG、PH,則圖中陰影面積(△PEF和△PGH的面積和)等于( 。
A. 7 B. 8 C. 12 D. 14
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com