【題目】如圖,拋物線y=ax2+bx+c交x軸于A、B 兩點,交 y 軸于 C點,其中﹣2<h<﹣1,﹣1<xB<0,下列結(jié)論:①abc>0;②4a﹣2b+c>0;③5a+2c>3b;④(4a﹣b)(2a+b)<0;正確的有( 。﹤.
A. 4 B. 3 C. 2 D. 1
【答案】B
【解析】
①由拋物線對稱軸位置確定ab的符號,由拋物線與y軸的交點判斷c與0的關(guān)系,進(jìn)而對所得結(jié)論進(jìn)行判斷;
②當(dāng)x=﹣2時,y>0,代入得4a﹣2b+c>0,可作判斷;
③根據(jù)b>4a,得2b﹣8a>0①,當(dāng)x=﹣1,x=﹣2時,y>0,則有a﹣b+c>0①,4a﹣2b+c>0②,兩式相加可得結(jié)論;
④根據(jù)對稱軸公式和﹣2<h<﹣1可得:4a﹣b<0,根據(jù)a<0,b<0可知:2a+b<0,可作判斷.
①∵拋物線開口向下,
拋物線對稱軸位于y軸的左側(cè),則a、b同號,故ab>0,
拋物線與y軸交于負(fù)半軸,則c<0,故abc<0,
故①正確;
②拋物線y=ax2+bx+c交x軸于A、B 兩點,其中﹣2<h<﹣1,﹣1<xB<0,
∴當(dāng)x=﹣2時,y>0,即4a﹣2b+c>0,
故②正確;
③∵當(dāng)x=﹣1時,y>0,即a﹣b+c>0①,當(dāng)x=﹣2時,y>0,即4a﹣2b+c>0,4a﹣2b+c>0②,
∴①+②得,5a﹣3b+2c>0,即5a+2c>3b,
故③正確;
④∵拋物線開口方向向下,
∴a<0,
∵x=﹣=h,且﹣2<h<﹣1,
∴4a<b<2a,
∴4a﹣b<0,
又∵h<0,
∴﹣<1
∴2a+b<0,
∴(4a﹣b)(2a+b)>0,
故④錯誤;
所以本題正確的有:①②③,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(滿分12分)在平面直角坐標(biāo)系中,拋物線與軸的兩個交點
分別為A(-3,0)、B(1,0),過頂點C作CH⊥x軸于點H.
(1)直接填寫:= ,b= ,頂點C的坐標(biāo)為 ;
(2)在軸上是否存在點D,使得△ACD是以AC為斜邊的直角三角形?若存在,求出點D的坐標(biāo);若不存在,說明理由;
(3)若點P為x軸上方的拋物線上一動點(點P與頂點C不重合),PQ⊥AC于點Q,當(dāng)△PCQ與△ACH相似時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD和正方形AEFG的邊長分別為2和,點B在邊AG上,點D在線段EA的延長線上,連接BE.
(1)如圖1,求證:DG⊥BE;
(2)如圖2,將正方形ABCD繞點A按逆時針方向旋轉(zhuǎn),當(dāng)點B恰好落在線段DG上時,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,以AB上一點O為圓心,OA為半徑的圓與BC相切于點D,分別交AB,AC于點E,F.
(1)如圖①,連接AD,若∠CAD=25°,求∠B的大小;
(2)如圖②,若點F為弧AD的中點,⊙O的半徑為2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明為了檢測自己實心球的訓(xùn)練情況,再一次投擲的測試中,實心球經(jīng)過的拋物線如圖所示,其中出手點A的坐標(biāo)為(0,),球在最高點B的坐標(biāo)為(3,).
(1)求拋物線的解析式;
(2)已知某市男子實心球的得分標(biāo)準(zhǔn)如表:
得分 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
擲遠(yuǎn)(米) | 8.6 | 8.3 | 8 | 7.7 | 7.3 | 6.9 | 6.5 | 6.1 | 5.8 | 5.5 | 5.2 | 4.8 | 4.4 | 4.0 | 3.5 | 3.0 |
假設(shè)小明是春谷中學(xué)九年級的男生,求小明在實心球訓(xùn)練中的得分;
(3)在小明練習(xí)實心球的正前方距離投擲點7米處有一個身高1.2米的小朋友在玩耍,問該小朋友是否有危險(如果實心球在小孩頭頂上方飛出為安全,否則視為危險),請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在圓O中,直徑CD⊥弦AB于點E,點P是CD延長線上一點,連接PB、BD.
(1)若BD平分∠ABP,求證:PB是圓O的切線;
(2)若PB是圓O的切線,AB=4,OP=4,求OE的長;
(3)如圖2,連接AP,延長BD交AP于點F,若BD⊥AP,AB=2,OP=4,求tan∠BDE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.
(1)求證:AB是⊙O的切線.
(2)已知AO交⊙O于點E,延長AO交⊙O于點D,tanD=,求的值.
(3)(3分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“共建環(huán)保模范城,共享綠色新重慶”,市政府強(qiáng)力推進(jìn)城市生活污水處理、生活垃圾處理設(shè)施建設(shè)改造工作.為此,某化工廠在一期工程完成后購買了4臺甲型和5臺乙型污水處理設(shè)備,共花費資金102萬元,且每臺乙型設(shè)備的價格比每臺甲型設(shè)備價格少3萬元.已知每臺甲型設(shè)備每月能處理污水240噸,每臺乙型設(shè)備每月能處理污水180噸.今年該廠二期工程即將完成,產(chǎn)生的污水將大大增加,于是該廠決定再購買甲、乙兩型設(shè)備共12臺用于二期工程的污水處理,預(yù)算本次購買資金不超過129萬元,預(yù)計二期工程完成后每月將產(chǎn)生不少于2220噸污水.
(1)請你計算每臺甲型設(shè)備和每臺乙型設(shè)備的價格各是多少萬元?
(2)請你求出用于二期工程的污水處理設(shè)備的所有購買方案;
(3)請你說明在(2)的所有方案中,哪種購買方案的總花費最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A在反比例函數(shù)y=(x>0)的圖象上,作Rt△ABC,邊BC在x軸上,點D為斜邊AC的中點,連結(jié)DB并延長交y軸于點E,若△BCE的面積為4,則k的值是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com