【題目】將兩塊大小相同的含30°角的直角三角板(∠BAC=∠BAC30°)按圖方式放置,固定三角板ABC,然后將三角板ABC繞直角頂點C順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于90°)至圖所示的位置,ABAC交于點E,ACAB′交于點F,ABAB′相交于點O

1)當旋轉(zhuǎn)角為   度時,CFCB′;

2)在上述條件下,ABAB′垂直嗎?請說明理由.

【答案】(1)30;(2ABAB′,理由詳見解析.

【解析】

1)由CFCB′可知∠CFB′=∠CBF60°,從而可求得∠FCB′的度數(shù),然后可求得∠ACA30°;

2)由∠ACA30°,可求得∠ECB60°,然后可求得∠AEO=∠BEC60°,從而可求得∠AOE90°.

解:(1∵CFCB′

∴∠CFB′∠CB′F60°

∴∠A′CA90°∠FCB′90°60°30°

故旋轉(zhuǎn)角為30°時,CFCB′

故答案為:30°

2∵∠A′CA30°,

∴∠BCE∠ACB∠A′CA90°30°60°

∴∠B∠BCE∠BEC60°

∴∠A′EO60°

∴∠A′EO+∠A′60°+30°90°

∴∠A′OE90°

∴AB⊥A′B′

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+mx+nx軸于點A﹣2,0)和點B,交y軸于點C0,2).

1)求拋物線的函數(shù)表達式;

2)若點M在拋物線上,且SAOM=2SBOC,求點M的坐標;

3)如圖2,設點N是線段AC上的一動點,作DNx軸,交拋物線于點D,求線段DN長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象在第一象限交于點,與軸的負半軸交于點,且.

1)求函數(shù)的表達式.

2)已知直線軸相交于點在第一象限內(nèi),求反比例函數(shù)的圖象上一點,使得.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術》是中國傳統(tǒng)數(shù)學重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架《九章算術》中記

載:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,間徑幾何?如圖

閱讀完這段文字后,小智畫出了一個圓柱截面示意圖如圖,其中BOCD于點A,求間徑就是要求O的直徑再次閱讀后,發(fā)現(xiàn)AB=______寸,CD=____一尺等于十寸,通過運用有關知識即可解決這個問題請你補全題目條件,并幫助小求出O的直徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,O的半徑為1,P是坐標系內(nèi)任意一點,點P到O的距離SP的定義如下:若點P與圓心O重合,則SPO的半徑長;若點P與圓心O不重合,作射線OP交O于點A,則SP為線段AP的長度.

圖1為點P在O外的情形示意圖.

(1)若點B(1,0),C(1,1),D(0,),則SB= ;SC= ;SD= ;

(2)若直線y=x+b上存在點M,使得SM=2,求b的取值范圍;

(3)已知點P,Q在x軸上,R為線段PQ上任意一點.若線段PQ上存在一點T,滿足T在O內(nèi)且STSR,直接寫出滿足條件的線段PQ長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在反比例函數(shù)y=圖象的第一象限的那一支上,AB垂直于y軸于點B,點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且EC=AC,點D為OB的中點,若ADE的面積為5,則k的值為(  )

A. B. 10 C. D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示,并且關于x的一元二次方程ax2+bx+cm=0有兩個不相等的實數(shù)根,下列結論:b2﹣4ac<0;②abc>0;③ab+c<0;④m>﹣2,其中,正確的個數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,利用一個直角墻角修建一個梯形儲料場ABCD,其中∠C120°.若新建墻BCCD總長為12m,則該梯形儲料場ABCD的最大面積是(

A.18m2B.m2C.m2D.m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=-2x+3與拋物線y=x2相交于A,B兩點,O為坐標原點.

(1)求點AB的坐標;

(2)連結OA,OB,求△OAB的面積.

查看答案和解析>>

同步練習冊答案