【題目】己知:為等邊三角形,點E為射線AC上一點,點D為射線CB上一點,.
(1)如圖1,當E在AC的延長線上且時,AD是的中線嗎?請說明理由;
(2)如圖2,當E在AC的延長線上時,等于AE嗎?請說明理由;
(3)如圖3,當D在線段CB的延長線上,E在線段AC上時,請直接寫出AB、BD、AE的數(shù)量關系.
【答案】(1)是,理由見解析;(2),理由見解析;(3).
【解析】
(1)由等邊三角形的性質(zhì)得∠BAC=∠ACD=60°,由等腰三角形的性質(zhì)得∠CDE=∠E,再根據(jù)三角形外角的性質(zhì)可得∠E=30°,繼而可得 ∠DAC=∠E=30°,得出AD平分∠BAC,由此即可得AD是△ABC的中線;
(2)在AB上取BH=BD,連接DH,利用AHD≌△DCE得出DH=CE,得出AE=AB+BD,
(3)在AB上取AF=AE,連接DF,利用△AFD≌△EFD得出角的關系,得出△BDF是等腰三角形,根據(jù)邊的關系得出結(jié)論AB-BD=AE.
(1)是,理由如下:
∵△ABC是等邊三角形,
∴∠BAC=∠ACD=60°,
∵CE=CD,
∴∠CDE=∠E,
∵∠ACD=∠E+∠CDE,
∴∠E=30°,
∵AD=DE,
∴∠DAC=∠E=30°,
∴∠DAC=∠BAC,
即AD平分∠BAC,
∴AD是△ABC的中線;
(2),理由如下:
如圖2,在AB上取BH=BD,連接DH,
∵△ABC是等邊三角形,
∴∠BAC=∠ACD=∠B=60°,AB=AC,
∴∠DCE=120°,△BDH是等邊三角形,
∴DH=BD,∠DHB=60°,
∴∠AHD=120°,∠DHB=∠CAB,
∴∠DCE=∠AHD,DH//AC,
∵AD=DE,
∴∠E=∠DAC,
∵DH//AC,
∴∠HAD=∠DAC,
∴∠HAD=∠E,
∴△ADH≌△DEC,
∴DH=CE,
∴CE=BD,
∴AB+BD=AC+CE=AE;
(3)AE=AB-BD,理由如下:
如圖3,在AB上取AF=AE,連接DF,EF,
∵△ABC是等邊三角形,
∴∠BAC=∠ABC=60°,
∴△AEF是等邊三角形,
∴AF=EF,∠AFE=∠AFE=∠FAE=60°,
∴∠AFE=∠ABC,
∴EF//BC,
∴∠FED=∠EDB,
∵AD=DE,DF=DF,AF=EF,
∴△ADF≌△EDF,
∴∠DAF=∠DEF,∠ADF=∠EDF,
∵∠DFB=∠DAF+∠ADF,∠FDB=∠EDF+EDB,
∴∠DFB=∠FDB,
∴BD=BF,
∵AB-BF=AF,
∴AB-BD=AE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,
(1)請直接寫出、兩點的坐標;
(2)若把向上平移個單位,再向右平移個單位得,請在圖中畫出,并寫出點的坐標;
(3)求的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:二次函數(shù)y=ax2+bx+c的圖象所示,下列結(jié)論中:①abc>0;②2a+b=0;③當m≠1時,a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2,正確的個數(shù)為
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.
⑴求證:ΔABF≌ΔEDF;
⑵若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線C:y=x2經(jīng)過變化可得到拋物線C1:y1=a1x(x﹣b1),C1與x軸的正半軸交與點A1,且其對稱軸分別交拋物線C,C1于點B1,D1,此時四邊形OB1A1D1恰為正方形;按上述類似方法,如圖2,拋物線C1:y1=a1x(x﹣b1)經(jīng)過變換可得到拋物線C2:y2=a2x(x﹣b2),C2與x軸的正半軸交與點A2,且其對稱軸分別交拋物線C1,C2于點B2,D2,此時四邊形OB2A2D2也恰為正方形;按上述類似方法,如圖3,可得到拋物線C3:y3=a3x(x﹣b3)與正方形OB3A3D3.請?zhí)骄恳韵聠栴}:
(1)填空:a1= ,b1= ;
(2)求出C2與C3的解析式;
(3)按上述類似方法,可得到拋物線Cn:yn=anx(x﹣bn)與正方形OBnAnDn(n≥1).
①請用含n的代數(shù)式直接表示出Cn的解析式;
②當x取任意不為0的實數(shù)時,試比較y2015與y2016的函數(shù)值的大小并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個均勻的轉(zhuǎn)盤被平均分成9等份,分別標有1,2,3,4,5,6,7,8,9這9個數(shù)字.轉(zhuǎn)動轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字.
小亮和小芳兩人玩轉(zhuǎn)盤游戲,對游戲規(guī)則,小芳提議:若轉(zhuǎn)岀的數(shù)字是3的倍數(shù),小芳獲勝,若轉(zhuǎn)出的數(shù)字是4的倍數(shù),小亮獲勝.
(1)你認為小芳的提議合理嗎?為什么?
(2)利用這個轉(zhuǎn)盤,請你為他倆設計一種對兩人都公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,由正比例函數(shù)沿軸的正方向平移4個單位而成的一次函數(shù)
的圖像與反比例函數(shù)()在第一象限的圖像交于A(1,n)和B兩點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ABO的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解同學對體育活動的喜愛情況,某校設計了“你最喜歡的體育活動是哪一項(僅限一項)”的調(diào)查問卷該校對本校學生進行隨機抽樣調(diào)查,以下是根據(jù)調(diào)查數(shù)據(jù)得到的統(tǒng)計圖的部分。
抽樣調(diào)查學生最喜歡的體育活動人數(shù)的直方圖 抽樣調(diào)查學生最喜歡的體育活動人數(shù)扇形統(tǒng)計圖.
請根據(jù)以上信息解答以下問題:
(1)該校對多少名學生進行了抽樣調(diào)查?
(2)①請補全圖1并標上數(shù)據(jù),②圖2中=________;
(3)若該校共有學生800人,請你估計該校最喜羽毛球項目的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同。
(1)籃球和排球的單價各是多少元?
(2)若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com