【題目】如圖,△ABC中,AB=AC=10,BC=12,點D在邊BC上,且BD=4,以點D為頂點作∠EDF=∠B,分別交邊AB于點E,交AC或延長線于點F.
(1)當AE=4時,求AF的長;
(2)當以邊AC為直徑的⊙O與線段DE相切時,求BE的長.
【答案】
(1)解:∵∠EDF+∠FDC=∠B+∠DEB,∠EDF=∠B,
∴∠FDC=∠DEB,
∵AB=AC,
∴∠C=∠B,
∴△CDF∽△BED,
∴ ,即 ,
解得:CF= ,
∴AF=AC﹣CF=10﹣
(2)解:取邊AC中點O,作OG⊥DE于G,OQ⊥BC于Q,過點A作AH⊥BC于H,連接OD,如圖所示:
∵AB=AC,AH⊥BC,
∴CH= BC=6,
∵⊙O和線段DE相切,
∴OG= AC=5,
在Rt△CAH中,∠AHC=90°,cosC= ,
在Rt△CQO中,∠CQO=90°
∵cosC= ,
∴CQ=COcosC=5× =3,
∴DQ=BC﹣BD﹣CQ=12﹣4﹣3=5,
∴OG=DQ,
在Rt△OGD與Rt△DQO中, ,
∴Rt△OGD≌Rt△DQO(HL),
∴∠GOD=∠QDO,
∴OG∥BC,
∴∠EDB=∠OGD=90°,
∴cosB= =cosC= ,
∴BE= ,
∴當以邊AC為直徑的⊙O與線段DE相切時,BE= .
【解析】(1)先證△BDE∽△CFD,得出對應邊成比例,求出CF的長,即可得出結(jié)果;(2)取邊AC中點O,作OG⊥DE于G,OQ⊥BC于Q,過點A作AH⊥BC于H,連接OD,則CH= BC=6,由⊙O和線段DE相切,得出OG= AC=5,求出cosC= = ,CQ=COcosC=3,DQ=BC﹣BD﹣CQ=5,得出OG=DQ,由HL證得Rt△OGD≌Rt△DQO,得出∠GOD=∠QDO,OG∥BC,∠EDB=∠OGD=90°,由cosB= =cosC= ,即可得出結(jié)果.
【考點精析】根據(jù)題目的已知條件,利用等腰三角形的性質(zhì)和切線的性質(zhì)定理的相關知識可以得到問題的答案,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上的一點,連接BD,使∠A=2∠1,E是BC上的一點,以BE為直徑的⊙O經(jīng)過點D.
(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知y=﹣x+m(m>4)過動點A(m,0),并與反比例函數(shù)y= 的圖象交于B、C兩點(點B在點C的左邊),以OA為直徑作反比例函數(shù)y= 的圖象相交的半圓,圓心為P,過點B作x軸的垂線,垂足為E,并于半圓P交于點D.
(1)當m=5時,求B、C兩點的坐標.
(2)求證:無論m取何值,線段DE的長始終為定值.
(3)記點C關于直線DE的對稱點為C′,當四邊形CDC′E為菱形時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中AB=3,BC=4,∠B=90°,點B、C在兩坐標軸上滑動.當邊AC⊥x軸時,點A剛好在雙曲線 上,此時下列結(jié)論不正確的是( )
A.點B為(0, )
B.AC邊的高為
C.雙曲線為
D.此時點A與點O距離最大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,以對角線BD為邊作菱形BDFE,使B,C,E三點在同一直線上,連接BF,交CD與點G.
(1)求證:CG=CE;
(2)若正方形邊長為4,求菱形BDFE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩位同學做拋骰子(均勻正方體形狀)實驗,他們共拋了60次,出現(xiàn)向上點數(shù)的次數(shù)如表:
向上點數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 8 | 10 | 7 | 9 | 16 | 10 |
(1)計算出現(xiàn)向上點數(shù)為6的頻率.
(2)丙說:“如果拋600次,那么出現(xiàn)向上點數(shù)為6的次數(shù)一定是100次.”請判斷丙的說法是否正確并說明理由.
(3)如果甲乙兩同學各拋一枚骰子,求出現(xiàn)向上點數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小軒從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息: ①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤ .
你認為其中正確信息的個數(shù)有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點o和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D.直線y=﹣2x﹣1經(jīng)過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.
(1)求m的值及該拋物線對應的解析式;
(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC , 求出所有符合條件的點P的坐標;
(3)點Q是平面內(nèi)任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形.若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計了這15人某月的加工零件個數(shù):
每人加工零件個數(shù) | 540 | 450 | 300 | 240 | 210 | 120 |
人數(shù) | 1 | 1 | 2 | 6 | 3 | 2 |
(1)寫出這15人該月加工零件數(shù)的平均數(shù)、中位數(shù)和眾數(shù).
(2)假如生產(chǎn)部負責人把每位工人的月加工零件個數(shù)定為260,你認為這個定額是否合理?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com