我們知道:,,,…

那么________.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:初中數(shù)學 三點一測叢書 八年級數(shù)學 下。ńK版課標本) 江蘇版 題型:044

閱讀下列材料并解決有關問題:

化簡含有絕對值的代數(shù)式的一種方法

我們知道|x|=現(xiàn)在我們可以用這一結論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x-2|時,可令x+1=0和x-2=0,分別求得x=-1,x=2(稱-1,2分別為|x+1|與|x-2|的零點值).在實數(shù)范圍內(nèi),零點值x=-1和x=2可將全體實數(shù)分成不重復且不遺漏的如下3種情況:

  (1)x<-1;(2)-1≤x<2;(3)x≥2.

  從而化簡代數(shù)式|x+1|+|x-2|可分以下3種情況:

  (1)當x<-1時,原式=-(x+1)-(x-2)=-2x+1;

  (2)當-1≤x<2時,原式=x+1-(x-2)=3;

  (3)當x≥2時,原式=x+1+x-2=2x-1.

  綜上討論,原式=

通過以上閱讀,請你解決以下問題:

(1)分別求出|x+2|和|x-4|的零點值;

(2)化簡代數(shù)式|x+2|+|x-4|.

查看答案和解析>>

科目:初中數(shù)學 來源:新課標教材導學  數(shù)學九年級(第一學期) 題型:038

計算:+…+(n為正整數(shù)).

這個式子共有n項,屬于異分母分數(shù)加減的類型.如果先通分,將各項化為同分母分數(shù)的話,分母將十分龐大,這是很困難的,在實際運算的時候也是不現(xiàn)實的,那么怎么辦呢?

讓我們分析一下各項的特點:都是的形式,當n取從1開始漸次增大的自然數(shù)時,就是各項了.可以把看成是各項的代表式.我們知道

,

利用這一點,每一項都可以拆成兩項,由于n是按自然數(shù)逐次遞增的,所以前后兩項拆開后會有相同部分可以抵消,如:

=()+()

=1-

所以可得

+…+

=()+()+…+()+()

=1-+…+

=1-

看!經(jīng)過拆項以后,原本很復雜的計算,一下子簡單了!諾長的一個式子,最后的結果也很簡單.“巧拆”帶來“巧算”.

利用這樣拆分的方法,你想想下面的計算題,能否做到又快又準呢?

(1)+…+(n為大于2的整數(shù));

(2)+…+(n為正整數(shù));

(3)+…+(n為正整數(shù)).

在你完成上面的計算后,可與同學們討論一下,對于

+…+(n為正整數(shù))

能否還采用這樣的拆項方法進行巧算?為什么?再與同學們探索一下,對于下面的式子,如何計算?

+…+(n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源:活學巧練八年級數(shù)學(下) 題型:044

我們知道Rt△ABC中,∠A=時,就有BC2=AC2+AB2,反過來在△ABC中,若有AC2+AB2=BC2,是否存在∠A=這樣的結論呢?下面就這個問題我們進行探究.

已知△ABC中,AC2+AB2=BC2

求證:∠A=

證明:作,使,

=AB,=AC,

=AB2+AC2.又∵BC2=AB2+AC2,

∴_____________

在△ABC和中,

∴_____________

∴_____________

(1)補充上述證明過程空缺的部分;

(2)上面已證的命題就是勾股定理的逆定理,可以直接運用上述的結論解決下面的問題:

已知正方形ABCD,AB=a,點E為AB的中點,點F在AD邊上,且AF=AD,用兩種不同的方法證明:EF⊥CE.

查看答案和解析>>

科目:初中數(shù)學 來源:新課標教材導學  數(shù)學七年級(第一學期) 題型:038

我們知道:

=1-,,…,

那么=________.

利用上面的規(guī)律計算:

(1)+…+

(2)+…+

查看答案和解析>>

同步練習冊答案