精英家教網(wǎng)如圖,已知雙曲線y=
k
x
(x>0)經(jīng)過矩形OABC的邊AB、BC上的點F、E,其中CE=
1
3
CB,AF=
1
3
AB,且四邊形OEBF的面積為2,則k的值為
 
分析:設矩形的長為a,寬為b,則由已知表示出矩形的面積,三角形COE和三角形AOF的面積及四邊形OEBF的面積,從而求出三角形AOF的面積,則求出k的值.
解答:解:設矩形的長為a,寬為b,
則由CE=
1
3
CB,AF=
1
3
AB,得:
CE=
1
3
a,AF=
1
3
b,
∴三角形COE的面積為:
1
6
ab,
三角形AOF的面積為:
1
6
ab,
矩形的面積為:ab,
四邊形OEBF的面積為:ab-
1
6
ab-
1
6
ab=
2
3
ab,
三角形AOF的面積
四邊形OEBF的面積
=
1
6
2
3
,
∴三角形AOF的面積=四邊形OEBF的面積×
1
4
=2×
1
4
=
1
2

1
2
|k|=
1
2
,
又由于反比例函數(shù)的圖象位于第一象限,k>0;
∴k=1.
故答案為:1.
點評:本題主要考查了反比例函數(shù) y=
k
x
中k的幾何意義.這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知雙曲線y1=
1
x
(x>0)
,y2=
4
x
(x>0)
,點P為雙曲線y2=
4
x
上的一點,且PA⊥x軸于點A,PB⊥y軸于點B,PA、PB分別依次交雙曲線y1=
1
x
于D、C兩點,則△PCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•濟南)如圖,已知雙曲線y=
kx
經(jīng)過點D(6,1),點C是雙曲線第三象限上的動點,過C作CA⊥x軸,過D作DB⊥y軸,垂足分別為A,B,連接AB,BC
(1)求k的值;
(2)若△BCD的面積為12,求直線CD的解析式;
(3)判斷AB與CD的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•徐州模擬)如圖,已知雙曲線y=
k
x
(x>0)經(jīng)過矩形OABC的邊AB、BC上的點F、E,其中CE=
1
3
CB,AF=
1
3
AB,且四邊形OEBF的面積為2,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知雙曲線y=
3
x
與矩形OABC的對角線OB相交于點D,且DB:OD=2:3,則矩形OABC的面積為
25
3
25
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知雙曲線y=
k
x
與直角三角形OAB的斜邊OB相交于D,與直角邊AB相交于C.若BC:CA=2:1,△OAB的面積為8,則△OED的面積為( 。

查看答案和解析>>

同步練習冊答案