【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB邊上且DE⊥BE.
(1)判斷直線AC與△DBE外接圓的位置關(guān)系,并說明理由;
(2)若AD=6,AE=6,求BC的長.
【答案】(1)直線AC與△DBE外接圓相切.(2)BC=4.
【解析】
(1)取BD的中點(diǎn)O,連接OE,證明∠OEB=∠CBE后可得OE⊥AC;
(2)設(shè)OD=OE=OB=x,利用勾股定理求出x的值,再證明△AOE∽△ABC,利用線段比求解.
(1)直線AC與△DBE外接圓相切.
理由:∵DE⊥BE
∴BD為△DBE外接圓的直徑
取BD的中點(diǎn)O(即△DBE外接圓的圓心),連接OE
∴OE=OB
∴∠OEB=∠OBE
∵BE平分∠ABC
∴∠OBE=∠CBE
∴∠OEB=∠CBE
∵∠CBE+∠CEB=90°
∴∠OEB+∠CEB=90°,即OE⊥AC
∴直線AC與△DBE外接圓相切;
(2)設(shè)OD=OE=OB=x
∵OE⊥AC
∴(x+6)2﹣(6)2=x2
∴x=3
∴AB=AD+OD+OB=12
∵OE⊥AC
∴△AOE∽△ABC
∴,即
∴BC=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙C的半徑為2,圓外一點(diǎn)O滿足OC=3.5,點(diǎn)P為⊙C上一動(dòng)點(diǎn),經(jīng)過點(diǎn)O的直線l上有兩點(diǎn)A、B,且OA=OB,∠APB=90°,l不經(jīng)過點(diǎn)C,則AB的最小值為( )
A. 2 B. 2.5 C. 3 D. 3.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A、B兩城市相距100km.現(xiàn)計(jì)劃在這兩座城市間修筑一條高速公路(即線段AB),經(jīng)測量,森林保護(hù)中心P在A城市的北偏東30°和B城市的北偏西45°的方向上.已知森林保護(hù)區(qū)的范圍在以P點(diǎn)為圓心,50km為半徑的圓形區(qū)域內(nèi).請(qǐng)問計(jì)劃修筑的這條高速公路會(huì)不會(huì)穿越保護(hù)區(qū).為什么?(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是邊BC上的一點(diǎn),點(diǎn)E是邊AC上的一點(diǎn),且AB=AC=DC,BD=CE,連接AD、DE.
(1)求證:△ADE是等腰三角形;
(2)若∠ADE=40°,請(qǐng)求出∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組同學(xué)進(jìn)行測量大樹CD高度的綜合實(shí)踐活動(dòng),如圖,在點(diǎn)A處測得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點(diǎn)D處,斜面AB的坡度(或坡比)i=1:2.4,求大樹CD的高度?(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B,C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連結(jié)CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),如果∠BAC=90°,則∠BCE= °.
(2)設(shè)∠BAC=α,∠BCE=β.
①如圖2,當(dāng)點(diǎn)D在線段BC上移動(dòng)時(shí),α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.
②當(dāng)點(diǎn)D在直線BC上移動(dòng)時(shí),α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)你在備用圖上畫出圖形,并直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點(diǎn)E.
(1)求∠CBE的度數(shù);
(2)過點(diǎn)D作DF∥BE,交AC的延長線于點(diǎn)F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價(jià)300元.若一次性購買不超過10件時(shí),售價(jià)不變;若一次性購買超過10件時(shí),每多買1件,所買的每件服裝的售價(jià)均降低3元.已知該服裝成本是每件200元,設(shè)顧客一次性購買服裝x件時(shí),該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)顧客一次性購買多少件時(shí),該網(wǎng)店從中獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為4的等邊三角形,點(diǎn)D是AB上異于A,B的一動(dòng)點(diǎn),將△ACD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得△BCE,則旋轉(zhuǎn)過程中△BDE周長的最小值_____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com