【題目】下列說法正確的是( )

A. 明天降雨的概率是表示明天有的時間降雨

B. 彩票中獎的概率是表示買張彩票一定會中獎

C. 拋一枚硬幣正面朝上的概率是表示每拋次就有次出現(xiàn)正面朝上

D. 拋一枚普通的正方體骰子,出現(xiàn)朝正面的數(shù)為奇數(shù)的概率是表示如果這個骰子拋很多很多次,那么平均每次就有次出現(xiàn)朝正面的數(shù)為奇數(shù)

【答案】D

【解析】

A項,明天降雨的概率是80%”表示明天降雨的可能性為80%,故A項表述錯誤.

B項,彩票中獎的概率是1%,買100張可能中獎也可能不中獎,故B項表述錯誤.

C項,拋一枚硬幣正面朝上的概率是0.5”表示每拋硬幣2次可能有1次出現(xiàn)正面朝上,故B項表述錯誤.

D項,在相同條件下重復(fù)進行的n次試驗中,事件A發(fā)生的頻率穩(wěn)定地在某一常數(shù)p附近擺動,且隨n越大擺動幅度越小,則稱p為事件A的概率,當(dāng)大量重復(fù)拋擲骰子時,向上一面的點數(shù)為奇數(shù)發(fā)生的頻率接近于概率,平均每拋2次就有1次向上一面的點數(shù)為奇數(shù),故D項表述正確.

根據(jù)分析可得,答案選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是直角三角形,,以點為旋轉(zhuǎn)中心,將旋轉(zhuǎn)到的位置,且使經(jīng)過點

的度數(shù),判斷的形狀;

求線段與線段的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是DCP的平分線上一點.若AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面請你完成余下的證明過程)

(2)若將(1)中的正方形ABCD改為正三角形ABC(如圖2),N是ACP的平分線上一點,則當(dāng)AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

(3)若將(1)中的正方形ABCD改為邊形ABCD……X,請你作出猜想:當(dāng)AMN= °時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,扇形OMN的圓心角為45°,正方形A1B1C1A2的邊長為2,頂點A1,A2在線段OM上,頂點B1在弧MN上,頂點C1在線段ON上,在邊A2C1上取點B2,以A2B2為邊長繼續(xù)作正方形A2B2C2A3,使得點C2在線段ON上,點A3在線段OM上,……,依次規(guī)律,繼續(xù)作正方形,則A2018M=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知∠1=∠2,則下列條件中不一定能使△ABC≌△ABD的是( )

A. AC=AD B. BC=BD C. ∠C=∠D D. ∠3=∠4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠ACB=∠ADB=90°,EAB中點,連接DE、CE、CD

(1)求證:DE=CE

(2)若∠CAB=25°,∠DBA=35°,判斷△DEC的形狀,并說明理由;

(3)當(dāng)∠CAB+∠DBA=45°時,若CD=12,取CD中點F,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,,,,動點從點出發(fā),以每秒個單位的速度沿方向向終點運動;同時,動點也從點出發(fā),以每秒個單位的速度沿方向向終點運動.設(shè)兩點運動的時間為

連接,在點、運動過程中,是否始終相似?請說明理由;

連接,設(shè)的面積為,求關(guān)于的函數(shù)關(guān)系式;

連接、,是否存在的值,使?若存在,求出的值;若不存在,請說明理由;

探索:把沿直線折疊成,設(shè)交于點,當(dāng)是直角三角形時,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌化妝品商店有、三種型號的化妝品,今年國慶節(jié)期間采用組合打折銷售,銷售時采用了三種組合的方式進行銷售,甲種組合是:種, 種, 種;乙種組合是: 種,種;丙種組合是: 種,種,.如果組合銷售打折后A種每盒售價為元, 種每盒售價為元, 種每盒售價為.國慶節(jié)當(dāng)天,商店采用三種組合搭配的方式進行銷售后共得銷售額為元,其中 種的銷售額為元,那么種化妝品的銷售額是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是由邊長為1個單位長度的小正方形組成的網(wǎng)格,線段AB的端點在格點上.

(1)請建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系xOy,使得A點的坐標(biāo)為(-3,-1),在此坐標(biāo)系下,B點的坐標(biāo)為________________;

(2)將線段BA繞點B逆時針旋轉(zhuǎn)90°得線段BC,畫出BC;在第(1)題的坐標(biāo)系下,C點的坐標(biāo)為__________________;

(3)在第(1)題的坐標(biāo)系下,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過O、B、C三點,則此函數(shù)圖象的對稱軸方程是________________.

【答案】 (-1,2) (2,0) x=1

【解析】分析:根據(jù)點的坐標(biāo)建立坐標(biāo)系,即可寫出點的坐標(biāo).

畫出點旋轉(zhuǎn)后的對應(yīng)點連接,寫出點的坐標(biāo).

用待定系數(shù)法求出函數(shù)解析式,即可求出對稱軸方程.

詳解:(1)建立坐標(biāo)系如圖,

B點的坐標(biāo)為;

(2)線段BC如圖,C點的坐標(biāo)為

(3)把點代入二次函數(shù),得

解得:

二次函數(shù)解析為:

對稱軸方程為:

故對稱軸方程是

點睛:考查圖形與坐標(biāo);旋轉(zhuǎn)、對稱變換;待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的圖象與性質(zhì).熟練掌握各個知識點是解題的關(guān)鍵.

型】解答
結(jié)束】
18

【題目】特殊兩位數(shù)乘法的速算——如果兩個兩位數(shù)的十位數(shù)字相同,個位數(shù)字相加為10,那么能立說出這兩個兩位數(shù)的乘積.如果這兩個兩位數(shù)分別寫作ABAC(即十位數(shù)字為A,個位數(shù)字分別為B、C,B+C=10,A>3),那么它們的乘積是一個4位數(shù),前兩位數(shù)字是A(A+1)的乘積,后兩位數(shù)字就是BC的乘積.

如:47×43=2021,61×69=4209.

(1)請你直接寫出83×87的值;

(2)設(shè)這兩個兩位數(shù)的十位數(shù)字為x(x>3),個位數(shù)字分別為yz(y+z=10),通過計算驗證這兩個兩位數(shù)的乘積為100x(x+1)+yz.

(3)99991×99999=___________________(直接填結(jié)果)

查看答案和解析>>

同步練習(xí)冊答案