【題目】如圖,在邊長為2的菱形ABCD中,∠A=60°,M是邊AD的中點(diǎn),N是AB上一動點(diǎn)(不與A、B重合),將△AMN沿MN所在直線翻折得到△A1MN,連接A1C,畫出點(diǎn)N從A到B的過程中A1的運(yùn)動軌跡,A1C的最小值為_____.
【答案】
【解析】
試題解析:如圖,連接CM,過點(diǎn)M向CD的延長線作垂線,垂足為點(diǎn)H,
由折疊可得,若點(diǎn)N與點(diǎn)B重合,則點(diǎn)A1與點(diǎn)D重合,
故點(diǎn)N從A到B的過程中,A1的運(yùn)動軌跡為以M為圓心,MA為半徑的半圓,
由翻折的性質(zhì)可得:A1M=AM,
∵M是AD邊的中點(diǎn),四邊形ABCD為菱形,邊長為2,
∴AM=A1M=1,
∵∠A=60°,四邊形ABCD為菱形,
∴∠HDM=60°,
∵在Rt△MHD中,DH=DMcos∠HDM=,MH=DMsin∠HDM=,
∴CH=CD+DH=2+=,
∴在Rt△CHM中,CM=,
∵A1C+A1M≥CM,
∴A1C≥CM﹣A1M=﹣1,
即當(dāng)點(diǎn)A1在線段CM上時(shí),A1C的最小值為﹣1.
故答案為:﹣1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點(diǎn)O,AB=5,AC=6,BD=8.
(1)求證:四邊形ABCD是菱形;
(2)過點(diǎn)A作AH⊥BC于點(diǎn)H,求AH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線l∥AB,點(diǎn)P是直線l上的一個(gè)動點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.
(1)求∠BAC的度數(shù);
(2)當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;
(3)在點(diǎn)P的運(yùn)動過程中
①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足 = ,連接AF并延長交⊙O于點(diǎn)E,連接AD、DE,若CF=2,AF=3.
(1)求證:△ADF∽△AED;
(2)求FG的長;
(3)求證:tan∠E= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC<BC,將△ABC沿EF折疊,使點(diǎn)A落在直角邊BC上的D點(diǎn)處,設(shè)EF與AB、AC邊分別交于點(diǎn)E、F,如果折疊后△CDF與△BDE均為等腰三角形,那么∠B=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)
過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封
閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2:(<0)的頂點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;
(3)當(dāng)△BDM為直角三角形時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,交矩形的對角線BD于點(diǎn)E,點(diǎn)F是BC的中點(diǎn),連接EF.
(1)試判斷EF與⊙O的位置關(guān)系,并說明理由.
(2)若DC=2,EF=,點(diǎn)P是⊙O上不與E、C重合的任意一點(diǎn),則∠EPC的度數(shù)為 (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,交矩形的對角線BD于點(diǎn)E,點(diǎn)F是BC的中點(diǎn),連接EF.
(1)試判斷EF與⊙O的位置關(guān)系,并說明理由.
(2)若DC=2,EF=,點(diǎn)P是⊙O上不與E、C重合的任意一點(diǎn),則∠EPC的度數(shù)為 (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,將ABCD放置在第一象限,且AB∥x軸.直線y=﹣x從原點(diǎn)出發(fā)沿x軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度l與直線在x軸上平移的距離m的函數(shù)圖象如圖2所示,那么AD的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com