【題目】已知點A(2,﹣3)在雙曲線y=上,則下列哪個點也在此雙曲線上( )
A. (1,6) B. (﹣1,6) C. (2,3) D. (﹣2,﹣3)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場調(diào)查整理出如下信息:
①該產(chǎn)品90天內(nèi)日銷售量(m件)與時間(第x天)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
時間(第x天) | 1 | 3 | 6 | 10 | … |
日銷售量(m件) | 198 | 194 | 188 | 180 | … |
②該產(chǎn)品90天內(nèi)每天的銷售價格與時間(第x天)的關(guān)系如下表:
時間(第x天) | 1≤x<50 | 50≤x≤90 |
銷售價格(元/件) | x+60 | 100 |
(1)求m關(guān)于x的一次函數(shù)表達式;
(2)設(shè)銷售該產(chǎn)品每天利潤為y元,請寫出y關(guān)于x的函數(shù)表達式,并求出在90天內(nèi)該產(chǎn)品哪天的銷售利潤最大?最大利潤是多少?【提示:每天銷售利潤=日銷售量×(每件銷售價格-每件成本)】
(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖像經(jīng)過點A(1,0),B(-2,3).
(1)求該二次函數(shù)的表達式;
(2)求該二次函數(shù)的最大值;
(3)結(jié)合圖像,解答問題:當y>3時,x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線C1:y=ax2+bx+1的頂點坐標為D(1,0)且經(jīng)過點(0,1),將拋物線C1向右平移1個單位,向下平移1個單位得到拋物線C2,直線y=x+c,經(jīng)過點D交y軸于點A,交拋物線C2于點B,拋物線C2的頂點為P.
(1)求拋物線C1的解析式;
(2)如圖2,連結(jié)AP,過點B作BC⊥AP交AP的延長線于C,設(shè)點Q為拋物線上點P至點B之間的一動點,連結(jié)BQ并延長交AC于點F,
①當點Q運動到什么位置時,S△PBD×S△BCF=8?
②連接PQ并延長交BC于點E,試證明:FC(AC+EC)為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l的函數(shù)表達式為,點的坐標為,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點;按此做法進行下去,其中的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c上部分點的橫坐標x,縱坐標y,的對應(yīng)值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | -4 | -4 | 0 | 8 | … |
(1)根據(jù)上表填空:
①拋物線與x軸的交點坐標是_________和_________;
②拋物線經(jīng)過點(-3,_________);
(2)試確定拋物線y=ax2+bx+c的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,AC=BC=2,點P在以斜邊AB為直徑的半圓上,M為PC的中點.當點P沿半圓從點A運動至點B時,點M運動的路徑長是( )
A. π B. C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)
(1)若商店計劃銷售完這批商品后能獲利1 100元,請問甲、乙兩種商品應(yīng)分別購進多少件?
(2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并指出獲利最大的購貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AMN為等腰三角形,點O是底邊MN的中點,腰AN與⊙O相切于點E,ON與⊙O相交于點D.
(1)求證:AM與⊙O相切;
(2)若EN=,DN=2.求陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com