【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
【答案】(1)證明見解析;(2)∠ACB=96°或114°;(3).
【解析】
試題分析:(1)根據(jù)完美分割線的定義只要證明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.
(2)分三種情形討論即可①如圖2,當(dāng)AD=CD時,②如圖3中,當(dāng)AD=AC時,③如圖4中,當(dāng)AC=CD時,分別求出∠ACB即可.
(3)設(shè)BD=x,利用△BCD∽△BAC,得,列出方程即可解決問題.
試題解析:(1)如圖1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD為等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割線.
(2)①當(dāng)AD=CD時,如圖2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.
②當(dāng)AD=AC時,如圖3中,∠ACD=∠ADC=(180°-48°)÷2=66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.
③當(dāng)AC=CD時,如圖4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍棄,∴∠ACB=96°或114°.
(3)由已知AC=AD=2,∵△BCD∽△BAC,∴設(shè)BD=x,∴),∵x>0,∴x=,∵△BCD∽△BAC,∴=,∴CD=×2=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若“△”是新規(guī)定的某種運(yùn)算符號,設(shè)x△y=xy+x+y,則2△m=﹣16中,m的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算結(jié)果正確的是( )
A. a4a2=a8 B. (a4)2=a6 C. (ab)2=a2b2 D. (a﹣b)2=a2﹣b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要得到拋物線y=2(x+4)2﹣1,可以將拋物線y=2x2( 。
A. 向左平移4個單位,再向上平移1個單位
B. 向左平移4個單位,再向下平移1個單位
C. 向右平移4個單位,再向上平移1個單位
D. 向右平移4個單位,再向下平移1個單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小樂的數(shù)學(xué)積累本上有這樣一道題:
解方程: ﹣ =1
解:去分母,得6(2x+1)﹣(5x﹣1)=6…第一步
去括號,得4x+2﹣5x﹣1=6…第二步
移向、合并同類項,得x=5…第三步
方程兩邊同除以﹣1,得x=﹣5…第四步
在題后的反思中看,小鄭總結(jié)到:解一元一次方程的一般步驟都知道,卻沒有掌握好,因此解題時有一步出現(xiàn)了錯誤…
小樂的解法從第幾步開始出現(xiàn)錯誤,然后,請你自己細(xì)心地解下面的方程:
2﹣ (x+2)= (x﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師在黑板上書寫了一個正確的演算過程,隨后用手掌捂住了一個多項式,形式如下:
+(﹣3x2+5x﹣7)=﹣2x2+3x﹣6
(1)求所捂的多項式;
(2)若x是 x=﹣ x+3的解,求所捂多項式的值;
(3)若x為正整數(shù),任取x幾個值并求出所捂多項式的值,你能發(fā)現(xiàn)什么規(guī)律?
(4)若所捂多項式的值為144,請直接寫出x的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P(,)和直線y=kx+b,則點P到直線y=kx+b的距離證明可用公式d=計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d====.
根據(jù)以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標(biāo)為(0,5),半徑r為2,判斷⊙Q與直線的位置關(guān)系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com