【題目】繞點按逆時針方向旋轉(zhuǎn)度,并使各邊長變?yōu)樵瓉淼?/span>倍,得,即如圖①,我們將這種變換記為

如圖①,對作變換,則________;直線與直線所夾的銳角為________度;

如圖②,中,,,對作變換,使點、、在同一直線上,且四邊形為矩形,求的值;

如圖③,中,,,,對作變換,使點、在同一直線上,且四邊形為平行四邊形,求的值.

【答案】(1) 3:1,60; (2) n =2, θ=60°;(3) θ=72°,n=

【解析】

(1)由旋轉(zhuǎn)與相似的性質(zhì),即可得,然后由中,,,可得,即可求得直線與直線所夾的銳角的度數(shù);

(2)由四邊形是矩形,可得,然后由,即可求得的度數(shù),又由含角的直角三角形的性質(zhì),即可求得的值;

(3)由四邊形是平行四邊形,易求得,又由,根據(jù)相似三角形的對應(yīng)成比例,易得,繼而求得答案.

(1)根據(jù)題意得:,

,,

.

故答案為:.

四邊形是矩形,

中,,

;

四邊形是平行四邊形,

,

,

,而,

,

,

,

,,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,的中點,將沿直線折疊后得到,延長于點.若,,則的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某種時令商品每件成本為20元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來40天內(nèi)的日銷售量m(件)與時間t(天)的關(guān)系滿足:m=﹣2t+96.且未來40天內(nèi),前20天每天的價格y1(元/件)與時間t(天)的函數(shù)關(guān)系式為y1=t+25(1≤t≤20t為整數(shù)),后20天每天的價格y2(元/件)與時間t(天)的函數(shù)關(guān)系式為y2=﹣t+40(21≤t<40t為整數(shù)).下面我們就來研究銷售這種商品的有關(guān)問題

(1)請分別寫出未來40天內(nèi),20天和后20天的日銷售利潤w(元)與時間t的函數(shù)關(guān)系式;

(2)請預(yù)測未來40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?

(3)在實際銷售的前20天中,該公司決定每銷售一件商品就捐贈a元利潤(a<4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈后的日銷售利潤隨時間t(天)的增大而增大,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為米的籬笆圍成.已知墻長為米(如圖),設(shè)這個苗圃園垂直于墻的一邊長為米.

若苗圃園的面積為平方米,求;

若平行于墻的一邊長不小于米,這個苗圃園的面積有最大值嗎?如果有,求出最大值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,,點開始沿折線的速度運(yùn)動,點開始沿邊以的速度移動,如果點、分別從、同時出發(fā),當(dāng)其中一點到達(dá)時,另一點也隨之停止運(yùn)動,設(shè)運(yùn)動時間為,當(dāng)________時,四邊形也為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用﹣1來表示的小數(shù)部分,事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是的小數(shù)部分,又例如:∵22<(2<32,即2<3,∴的整數(shù)部分為2,小數(shù)部分為(﹣2).

請解答:

(1)的整數(shù)部分是   ,小數(shù)部分是   

(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求a+b﹣的值.

(3)已知x是3+的整數(shù)部分,y是其小數(shù)部分,直接寫出x﹣y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,DBC邊上一個動點(DB、C均不重合),AD=AE,∠DAE=60°,連接CE

1)求證:ABD≌△ACE

2)求證:CE平分∠ACF;

3)若AB=2,當(dāng)四邊形ADCE的周長取最小值時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】凸四邊形的四個頂點滿足:每一個頂點到其他三個頂點距離之積都相等.則四邊形一定是(

A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度數(shù)

查看答案和解析>>

同步練習(xí)冊答案