【題目】如圖①,在RtABC中,∠C=90°,AB=10,BC=6,點(diǎn)P從點(diǎn)A出發(fā),沿折線(xiàn)ABBC向終點(diǎn)C運(yùn)動(dòng),在AB上以每秒5個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),在BC上以每秒3個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P停止時(shí),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.

1)求線(xiàn)段AQ的長(zhǎng);(用含t的代數(shù)式表示)

2)連結(jié)PQ,當(dāng)PQ與△ABC的一邊平行時(shí),求t的值;

3)如圖②,過(guò)點(diǎn)PPEAC于點(diǎn)E,以PEEQ為鄰邊作矩形PEQF,點(diǎn)DAC的中點(diǎn),連結(jié)DF.設(shè)矩形PEQF與△ABC重疊部分圖形的面積為S

①當(dāng)點(diǎn)Q在線(xiàn)段CD上運(yùn)動(dòng)時(shí),求St之間的函數(shù)關(guān)系式;

②直接寫(xiě)出DF將矩形PEQF分成兩部分的面積比為12時(shí)t的值.

【答案】1AQ=8t0t4);(2t=s3s;(3)①;②t=ss

【解析】試題分析:1)利用勾股定理先求出AC,根據(jù)AQ=ACCQ即可解決問(wèn)題;

2)分兩種情形列出方程求解即可;

3分三種情形a、如圖1中,當(dāng)0≤t時(shí),重疊部分是四邊形PEQFb、如圖2中,當(dāng)t≤2時(shí),重疊部分是四邊形PNQEC、如圖3中,當(dāng)2t≤3時(shí),重疊部分是五邊形MNPBQ.分別求解即可;

分兩種情形a、如圖4中,當(dāng)DEDQ=12時(shí),DF將矩形PEQF分成兩部分的面積比為12b、如圖5中,當(dāng)NEPN=12時(shí),DF將矩形PEQF分成兩部分的面積比為12.分別列出方程即可解決問(wèn)題;

試題解析:解:(1)在RtABC中,∵∠C=90°,AB=10,BC=6AC== =8,CQ=tAQ=8t0≤t≤4).

2當(dāng)PQBC時(shí), ,,t=s

當(dāng)PQAB時(shí), ,t=3

綜上所述,t=s3s時(shí),當(dāng)PQABC的一邊平行.

3如圖1中,a、當(dāng)0≤t時(shí),重疊部分是四邊形PEQF

S=PEEQ=3t84tt=

b、如圖2中,當(dāng)t≤2時(shí),重疊部分是四邊形PNQE

S=S四邊形PEQFSPFN=16t224t [5t8t] [5t8t0]=

C如圖3中,當(dāng)2t≤3時(shí),重疊部分是五邊形MNPBQ

S =S四邊形PBQF -SFNM=t[63t2][t4t2] [t4t2]=

綜上所述: ;

a、如圖4中,當(dāng)DEDQ=12時(shí),DF將矩形PEQF分成兩部分的面積比為12

則有(44t):(4t=12,解得t=s

b、如圖5中,當(dāng)NEPN=12時(shí),DF將矩形PEQF分成兩部分的面積比為12

DEDQ=NEFQ=13,4t4):(4t=13,解得t=s

綜上所述,當(dāng)t=ss時(shí),DF將矩形PEQF分成兩部分的面積比為12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC, 點(diǎn)M在△ABC內(nèi),點(diǎn)P在線(xiàn)段MC上,∠ABP=2ACM.

(1)若∠PBC=10°,BAC=80°,求∠MPB的值

(2)若點(diǎn)M在底邊BC的中線(xiàn)上,且BPAC,試探究∠A與∠ABP之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BDACD,CEABE,M,N分別是BC,DE的中點(diǎn).

(1)求證:MNDE;

(2)若BC=20,DE=12,求MDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:對(duì)于給定的兩個(gè)函數(shù),任取自變量x的一個(gè)值,當(dāng)x0時(shí),它們對(duì)應(yīng)的函數(shù)值互為相反數(shù);當(dāng)x0時(shí),它們對(duì)應(yīng)的函數(shù)值相等,我們稱(chēng)這樣的兩個(gè)函數(shù)互為相關(guān)函數(shù).例如:一次函數(shù)y=x1,它的相關(guān)函數(shù)為

1)已知點(diǎn)A(﹣5,8)在一次函數(shù)y=ax3的相關(guān)函數(shù)的圖象上,求a的值;

2)已知二次函數(shù)

①當(dāng)點(diǎn)Bm, )在這個(gè)函數(shù)的相關(guān)函數(shù)的圖象上時(shí),求m的值;

②當(dāng)﹣3x3時(shí),求函數(shù)的相關(guān)函數(shù)的最大值和最小值;

3)在平面直角坐標(biāo)系中,點(diǎn)M,N的坐標(biāo)分別為(﹣1),(,1}),連結(jié)MN.直接寫(xiě)出線(xiàn)段MN與二次函數(shù)的相關(guān)函數(shù)的圖象有兩個(gè)公共點(diǎn)時(shí)n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)A(2,0)的兩條直線(xiàn)l1,l2分別交y軸于點(diǎn)B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=

(1)求點(diǎn)B的坐標(biāo);

(2)若△ABC的面積為4,求直線(xiàn)l2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°

(1)請(qǐng)判斷ABCD的位置關(guān)系并說(shuō)明理由;

(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問(wèn)∠BAE∠MCD是否存在確定的數(shù)量關(guān)系?

(3)如圖3,在(1)的結(jié)論下,P為線(xiàn)段AC上一定點(diǎn),點(diǎn)Q為直線(xiàn)CD上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q在射線(xiàn)CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+∠CQP∠BAC有何數(shù)量關(guān)系? (2、3小題只需選一題說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩商場(chǎng)自行定價(jià)銷(xiāo)售某一商品.

(1)甲商場(chǎng)將該商品提價(jià)15%后的售價(jià)為1.15元,則該商品在甲商場(chǎng)的原價(jià)為元;

(2)乙商場(chǎng)將該商品提價(jià)20%后,用6元錢(qián)購(gòu)買(mǎi)該商品的件數(shù)比沒(méi)提價(jià)前少買(mǎi)1件,求該商品在乙商場(chǎng)的原價(jià)是多少?

(3)在(1)、(2)小題的條件下,甲、乙兩商場(chǎng)把該商品均按原價(jià)進(jìn)行了兩次價(jià)格調(diào)整.

甲商場(chǎng):第一次提價(jià)的百分率是,第二次提價(jià)的百分率是

乙商場(chǎng):兩次提價(jià)的百分率都是(

請(qǐng)問(wèn)甲、乙兩商場(chǎng),哪個(gè)商場(chǎng)的提價(jià)較多?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,CA=CB,ACB=90°,以AB的中點(diǎn)D為圓心,作圓心角為90°的扇形DEF,點(diǎn)C恰在EF上,設(shè)∠BDF=α(0°<α<90°),當(dāng)α由小到大變化時(shí),圖中陰影部分的面積( 。

A. 由小到大 B. 由大到小 C. 不變 D. 先由小到大,后由大到小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算 1+4+9+16+25+…的前 29 項(xiàng)的和是______

查看答案和解析>>

同步練習(xí)冊(cè)答案