【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知ABBC于點B,底座BC的長為1米,底座BC與支架AC所成的角∠ACB60°,點H在支架AF上,籃板底部支架EHBC,EFEH于點E,已知AH米,HF米,HE1米.

(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).

(2)求籃板底部點E到地面的距離.(結果保留根號)

【答案】(1) 籃板底部支架HE與支架AF所成的角∠FHE的度數(shù)為45°;(2) 籃板底部點E到地面的距離是(+)米

【解析】

(1)由cos∠FHE可得答案;

(2)延長FECB的延長線于M,過點AAGFMG,過點HHNAGN,據(jù)此知GM=ABHN=EG,Rt△ABC求得AB=BCtan60°;Rt△ANH求得HN=AHsin45°;根據(jù)EM=EG+GM可得答案

1)在Rt△EFH,cos∠FHE,∴∠FHE=45°.

籃板底部支架HE與支架AF所成的角∠FHE的度數(shù)為45°;

(2)延長FECB的延長線于M,過點AAGFMG,過點HHNAGN,則四邊形ABMG和四邊形HNGE是矩形,∴GM=AB,HN=EG.在Rt△ABC中,∵tan∠ACB,∴AB=BCtan60°=1,∴GM=AB.在Rt△ANH,∠FAN=∠FHE=45°,∴HN=AHsin45°,∴EM=EG+GM

籃板底部點E到地面的距離是()米

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,以AB為直徑的⊙OAC于點D.過點CCF∥AB,在CF上取一點E,使DE=CD,連接AE.對于下列結論:①AD=DC;②△CBA∽△CDE;=;④AE⊙O的切線,一定正確的結論全部包含其中的選項是(

A. ①② B. ①②③ C. ①④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉60°得到BN,連接EN、AM、CM,AM+BM+CM的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系xOy中,橫坐標為a的點A在反比例函數(shù)y1(x>0)的圖象上,點A′與點A關于點O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點A′.

(1)設a=2,點B(4,2)在函數(shù)y1、y2的圖象上.

①分別求函數(shù)y1、y2的表達式;

②直接寫出使y1>y2>0成立的x的范圍;

(2)如圖①,設函數(shù)y1、y2的圖象相交于點B,點B的橫坐標為3a,AA'B的面積為16,求k的值;

(3)設m=,如圖②,過點AADx軸,與函數(shù)y2的圖象相交于點D,以AD為一邊向右側作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點P一定在函數(shù)y1的圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為4.

(1)當m=4,n=20時.

①若點P的縱坐標為2,求直線AB的函數(shù)表達式.

②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的周長是20cm,以AB,AD為邊向外作正方形ABEF和正方形ADGH,若正方形ABEFADGH的面積之和為68cm2,那么矩形ABCD的面積是(  )

A. 9cm2 B. 16cm2 C. 21cm2 D. 24cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗探究:

有A,B兩個不透明的布袋,A布袋中有兩個完全相同的小球,分別標有數(shù)字1和2.B布袋中有三個完全相同的小球,分別標有數(shù)字-1,-2和-3.小明從A布袋中隨機取出一個小球,記錄其標有的數(shù)字為x,再從B布袋中隨機取出一個小球,記錄其標有的數(shù)字為y,這樣就確定點的一個坐標為

(1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標;

(2)求點Q落在直線上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△OAB的頂點坐標分別為O0,0)、A3,2)、B2,0),將這三個頂點的坐標同時擴大到原來的2倍,得到對應點D、EF

(1)在圖中畫出△DEF;

(2)E是否在直線OA上?為什么?

(3)OAB與△DEF______位似圖形(填“是”或“不是”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCCDE都為等腰直角三角形,∠ACBECD=90°.

探究:如圖①,當點A在邊EC上,點C在線段BD上時,連結BE、AD.求證:BEADBEAD

拓展:如圖②,當點A在邊DE上時,AB、CE交于點F,連結BE.若AE=2,AD=4,則的值為   

查看答案和解析>>

同步練習冊答案