分析 (1)根據(jù)角平分線的定義可得∠1=$\frac{1}{2}$∠ABC,∠2=$\frac{1}{2}$∠ACD,再根據(jù)三角形的內(nèi)角和定理整理即可得解;
(2)根據(jù)角平分線的定義可得∠1=$\frac{1}{2}$∠ABC,∠2=$\frac{1}{2}$∠ACD,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和和角平分線的定義可得∠2=$\frac{1}{2}$∠ACD=$\frac{1}{2}$(∠A+∠ABC),∠BOC=∠2-∠1,然后整理即可得解;
(3)根據(jù)三角形的外角性質(zhì)以及角平分線的定義表示出∠OBC和∠OCB,再根據(jù)三角形的內(nèi)角和定理解答;
(4)同(2)的求解思路;
(5)同(3)的求解思路.
解答 解:(1)∠BOC=90°+$\frac{1}{2}$∠A,理由如下:
∵BO和CO分別是∠ABC,∠ACB的角平分線,
∴∠1+∠2=$\frac{1}{2}$(∠ABC+∠ACB)=$\frac{1}{2}$(180°-∠A)=90°-$\frac{1}{2}$∠A,
∴∠BOC=180°-(∠1+∠2)=180°-(90°-$\frac{1}{2}$∠A)=90°+$\frac{1}{2}$∠A;
(2)探究2結(jié)論:∠BOC=$\frac{1}{2}$∠A.
理由如下:∵BO和CO分別是∠ABC和∠ACD的角平分線,
∴∠1=$\frac{1}{2}$∠ABC,∠2=$\frac{1}{2}$∠ACD,
又∵∠ACD是△ABC的一個(gè)外角,
∴∠2=$\frac{1}{2}$∠ACD=$\frac{1}{2}$(∠A+∠ABC)=$\frac{1}{2}$∠A+∠1,
∵∠2是△BOC的一個(gè)外角,
∴∠BOC=∠2-∠1=$\frac{1}{2}$∠A+∠1-∠1=$\frac{1}{2}$∠A,
即∠BOC=$\frac{1}{2}$∠A;
(3)由三角形的外角性質(zhì)和角平分線的定義,∠OBC=$\frac{1}{2}$(∠A+∠ACB),∠OCB=$\frac{1}{2}$(∠A+∠ABC),
在△BOC中,∠BOC=180°-∠OBC-∠OCB=180°-$\frac{1}{2}$(∠A+∠ACB)-$\frac{1}{2}$(∠A+∠ABC),
=180°-$\frac{1}{2}$(∠A+∠ACB+∠A+∠ABC),
=180°-$\frac{1}{2}$(180°+∠A),
=90°-$\frac{1}{2}$∠A;
(4)∠OBC+∠OCB=$\frac{1}{2}$(360°-∠A-∠D),
在△BOC中,∠BOC=180°-$\frac{1}{2}$(360°-∠A-∠B)=$\frac{1}{2}$(∠A+∠D);
(5)∵∠A=140°,∠B=120°,∠E=90°,
∴∠BCD+∠CDE=(5-2)•180°-140°-120°-90°=190°,
∴∠PCD+∠PDC=$\frac{1}{2}$(180°×2-190°)=85°,
在△BOC中,∠BOC=180°-(∠PCD+∠PDC)=180°-85°=95°.
點(diǎn)評 本題考查了三角形的外角性質(zhì),角平分線的定義,三角形的內(nèi)角和定理,熟記性質(zhì)并準(zhǔn)確識(shí)圖,整體思想的利用是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com