【題目】中,D是邊BC上一點,以點A為圓心,AD長為半徑作弧,如果與邊BC有交點E(不與點D重合),那么稱A-外截弧.例如,圖中的一條A-外截弧.在平面直角坐標系xOy中,已知存在A-外截弧,其中點A的坐標為,點B與坐標原點O重合.

1)在點,,,中,滿足條件的點C是_______.

2)若點C在直線.

①求點C的縱坐標的取值范圍.

②直接寫出A-外截弧所在圓的半徑r的取值范圍.

【答案】1C2、C3;(2-2<y<y>2;(3<r<5<r<5.

【解析】

1)如圖,根據(jù)BC1AB可得△ABC1沒有A-外截弧,作AFBC2F,由AC2<AB可得當AF<AD2<AC2時,△ABC2A-外截弧;作AGBC3G,根據(jù)點C3坐標,可求出AC3的長,可得AC3<AB,即可得出AG<AD1<AC3時,△ABC3A-外截弧;根據(jù)AB、C4坐標可求出BC4AC4的長,根據(jù)勾股定理逆定理可得△ABC4是直角三角形,且AC4BC4,可得△ABC4沒有A-外截弧,綜上即可得答案;

2)①根據(jù)△ABCA-外截弧可得∠ABC<90°,可得x>0,設(shè)點C坐標為(m,m-2),利用直角三角形斜邊中線的性質(zhì)可求出∠ACB=90°時點C的坐標,根據(jù)∠ACB<90°時,△ABCA-外截弧可得m的取值范圍,代入y=x-2,即可得點C縱坐標的取值范圍;

②求出∠ACB=90°AC的長,進而可得答案.

1)如圖,∵BC1AB

∴△ABC1沒有A-外截弧,

AFBC2F,

A50),B00),C25,-3),

∴∠BAC2=90°,AC2=3,AB=5

AC2<AB,

AF<AD2<AC2時,△ABC2A-外截弧,滿足條件,

AGBC3G

C36,4),

AC3=<AB,

AG<AD1<時,△ABC3A-外截弧,滿足條件,

C44,2),

BC4=,AC4=,AB=5

()2+()2=52,

∴△ABC4是直角三角形,∠AC4B=90°,

∴△ABC4沒有A-外截弧,

綜上所述:滿足條件的點CC2、C3.

故答案為:C2C3

2)①∵點C在直線y=x-2上,

∴設(shè)點C的坐標為(mm-2),

∵△ABCA-外截弧,

∴∠ABC<90°,

m>0

當∠ACB=90°時,

A5,0),B00),

∴斜邊AB的中點H的坐標為(2.5,0),

(m-2.5)2+(m-2)2=(2.5)2

解得:m1=,m2=4

∴∠ACB=90°時,點C坐標為(,)或(4,2),

∵直線解析式為y=x-2,

x=0時,y=-2,

∴與y軸交點為(0-2),

∵△ABCA-外截弧時,∠ACB<90°,

∴點C的縱坐標的取值范圍為-2<y<y>2.

②由①得x=x=4時,∠ACB=90°

C1,),C24,2),

AC1=,AC2=,

A-外截弧所在圓的半徑r的取值范圍為:<r<5<r<5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】深圳國際馬拉松賽事設(shè)有A“全程馬拉松,B“半程馬拉松,C“嘉年華馬拉松三個項目,小智和小慧參加了該賽事的志愿者服務(wù)工作,組委會將志愿者隨機分配到三個項目組.

1)小智被分配到A“全程馬拉松項目組的概率為 .

2)用樹狀圖或列表法求小智和小慧被分到同一個項目標組進行志愿服務(wù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過兩點A(﹣3,0),B0,3),且其對稱軸為直線x=﹣1

1)求此拋物線的解析式;

2)若點P是拋物線上點A與點B之間的動點(不包括點A,點B),求PAB的面積的最大值,并求出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為了解旅游人數(shù)的變化情況,收集并整理了20171月至201912月期間的月接待旅游量(單位:萬人次)的數(shù)據(jù)并繪制了統(tǒng)計圖如下:

根據(jù)統(tǒng)計圖提供的信息,下列推斷不合理的是(

A.2017年至2019年,年接待旅游量逐年增加

B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份

C.2019年的月接待旅游量的平均值超過300萬人次

D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相對于上半年(1月至6月)波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,B的半徑OA上的一點(不與端點重合),過點BOA的垂線交于點C,D,連接OD,E上一點,,過點C的切線l,連接OE并延長交直線l于點F.

1)①依題意補全圖形.

②求證:∠OFC=ODC.

2)連接FB,若BOA的中點,的半徑是4,求FB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,曲線AB是拋物線的一部分(其中A是拋物線與y軸的交點,B是頂點),曲線BC是雙曲線的一部分.曲線ABBC組成圖形W由點C開始不斷重復圖形W形成一組“波浪線”.若點,在該“波浪線”上,則m的值為________,n的最大值為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地質(zhì)量監(jiān)管部門對轄區(qū)內(nèi)的甲、乙兩家企業(yè)生產(chǎn)的某同類產(chǎn)品進行檢查,分別隨機抽取了50件產(chǎn)品并對某一項關(guān)鍵質(zhì)量指標做檢測,獲得了它們的質(zhì)量指標值s,并對樣本數(shù)據(jù)(質(zhì)量指標值s)進行了整理、描述和分析.下面給出了部分信息.

a.該質(zhì)量指標值對應(yīng)的產(chǎn)品等級如下:

質(zhì)量指標值

等級

次品

二等品

一等品

二等品

次品

說明:等級是一等品,二等品為質(zhì)量合格(其中等級是一等品為質(zhì)量優(yōu)秀).

等級是次品為質(zhì)量不合格.

b.甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布統(tǒng)計表如下(不完整).

c.乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖如下.

甲企業(yè)樣本數(shù)據(jù)的頻數(shù)分布表

分組

頻數(shù)

頻率

2

0.04

m

32

n

0.12

0

0.00

合計

50

1.00

乙企業(yè)樣本數(shù)據(jù)的頻數(shù)分布直方圖

d.兩企業(yè)樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、極差、方差如下:

平均數(shù)

中位數(shù)

眾數(shù)

極差

方差

甲企業(yè)

31.92

32.5

34

15

11.87

乙企業(yè)

31.92

31.5

31

20

15.34

根據(jù)以上信息,回答下列問題:

1m的值為________,n的值為________.

2)若從甲企業(yè)生產(chǎn)的產(chǎn)品中任取一件,估計該產(chǎn)品質(zhì)量合格的概率為________;若乙企業(yè)生產(chǎn)的某批產(chǎn)品共5萬件,估計質(zhì)量優(yōu)秀的有________萬件;

3)根據(jù)圖表數(shù)據(jù),你認為________企業(yè)生產(chǎn)的產(chǎn)品質(zhì)量較好,理由為______________.(從某個角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C的一定點,D是弦AB上的一定點,P是弦CB上的一動點.連接DP,將線段PD繞點P順時針旋轉(zhuǎn)得到線段.射線交于點Q.已知,設(shè)P,C兩點間的距離為xcm,P,D兩點間的距離,P,Q兩點的距離為.

小石根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù),,隨自變量x的變化而變化的規(guī)律進行了探究,下面是小石的探究過程,請補充完整:

1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了,,與x的幾組對應(yīng)值:

x/cm

0

1

2

3

4

5

6

/cm

4.29

3.33

1.65

1.22

1.50

2.24

/cm

0.88

2.84

3.57

4.04

4.17

3.20

0.98

2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)據(jù)所對應(yīng)的點,,并畫出函數(shù),的圖象;

3)結(jié)合函數(shù)圖象,解決問題:連接DQ,當△DPQ為等腰三角形時,PC的長度約為_____cm.(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)ykx,y,y的圖象如圖所示,下列判斷正確的有_____.(填序號)①k,a,b都是正數(shù);②函數(shù)yy的圖象會出現(xiàn)四個交點;③A,D兩點關(guān)于原點對稱;④若BOA的中點,則a4b

查看答案和解析>>

同步練習冊答案