(1)已知:如圖1,△ABC為正三角形,點(diǎn)M為BC邊上任意一點(diǎn),點(diǎn)N為CA邊上任意一點(diǎn),且BM=CN,BN與AM相交于Q點(diǎn),試求∠BQM的度數(shù).
(2)如果將(1)中的正三角形改為正方形ABCD(如圖2),點(diǎn)M為BC上任意一點(diǎn),點(diǎn)N為CD邊上任意一點(diǎn),且BM=CN,BN與AM相交于Q點(diǎn),那么∠BQM等于多少度呢?說(shuō)明理由.

(3)如果將(1)中的“正三角形”改為正五邊形…正n邊形(如圖3),其余條件都不變,請(qǐng)你根據(jù)(1)、(2)的求解思路,將你推斷的結(jié)論填入下表:(注:正多邊形的各個(gè)角都相等)
正多邊形 正五邊形 正n邊形
∠BQM的度數(shù)
分析:(1)根據(jù)正三角形的性質(zhì)得出∠ABC=∠C=60°,AB=BC,再根據(jù)BM=CN,證出△ABM≌△BCN,得出∠BAM=∠CBN,再根據(jù)三角形的外角等于與它不相鄰的兩內(nèi)角之和,即可得出∠BQM的值.
(2)根據(jù)正方形的性質(zhì)得出∠ABC=∠C=90°,AB=BC,同(1)得出∠BQM的值.
(3)根據(jù)正五邊形以及多邊形的性質(zhì)證出∠ABC=∠C的度數(shù),再同(1)證出△ABM≌△BCN,得出∠BAM=∠CBN,即可求出∠BQM的值.
解答:解:(1)∵△ABC是正三角形,
∴∠ABC=∠C=60°,AB=BC,
在△ABM和△BCN中,
AB=BC
∠ABC=∠C
BM=CN
,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∴∠BQM=∠BAQ+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°
∴∠BQM=60°.

(2)∵ABCD是正方形,
∴∠ABC=∠C=90°,AB=BC,
在△ABM和△BCN中,
AB=BC
∠ABC=∠C
BM=CN

∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BQM=∠ABN+∠BAM,
∴∠BQM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=90°

(3)∵ABCDE是正五邊形,
∴∠ABC=∠C=108°,AB=BC,
在△ABM和△BCN中,
AB=BC
∠ABC=∠C
BM=CN

∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BQM=∠ABN+∠BAM,
∴∠BQM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=108°,
同理可證:當(dāng)圖形是正n邊形時(shí),∠BQM的度數(shù)是:
(n-2)•180°
n
;
正多邊形 正五邊形 正n邊形
∠BQM的度數(shù) 108°
(n-2)•180°
n
點(diǎn)評(píng):本題重點(diǎn)考查了三角形全等的判定定理,用到的知識(shí)點(diǎn)是全等三角形的判定,等邊三角形的性質(zhì),三角形的內(nèi)角和外角的關(guān)系.解題的關(guān)鍵是證出△ABM≌△BCN,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2007年5月17日我市榮獲“國(guó)家衛(wèi)生城市稱號(hào)”.在“創(chuàng)衛(wèi)”過(guò)程中,要在東西方向M、N兩地之間修建一條道路.已知:如圖C點(diǎn)周?chē)?80m范圍內(nèi)為文物保護(hù)區(qū),在MN上點(diǎn)A處測(cè)得C在A的北偏東60°方向上,從A向東走500m到達(dá)B處精英家教網(wǎng),測(cè)得C在B的北偏西45°方向上.
(1)NM是否穿過(guò)文物保護(hù)區(qū)?為什么?(參考數(shù)據(jù):
3
≈1.732)
(2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高25%,則原計(jì)劃完成這項(xiàng)工作需要多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、已知,如圖,正比例函數(shù)與反比例函數(shù)的圖象相交于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(2,1),分別以A、B為圓心的圓與x軸相切,則圖中兩個(gè)陰影部分面積的和為
π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,∠1=∠2,
 
.求證:AB=AC.
(1)在橫線上添加一個(gè)使命題的結(jié)論成立的條件;
(2)寫(xiě)出證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,直角坐標(biāo)系內(nèi)的矩形ABCD,頂點(diǎn)A的坐標(biāo)為(0,3),BC=2AB,P為
AD邊上一動(dòng)點(diǎn)(與點(diǎn)A、D不重合),以點(diǎn)P為圓心作⊙P與對(duì)角線AC相切于點(diǎn)F,過(guò)P、F作直線L,交BC邊于點(diǎn)E,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)P1位置時(shí),直線L恰好經(jīng)過(guò)點(diǎn)B,此時(shí)直線的解析式是y=2x+1,
(Ⅰ)求BC、AP1的長(zhǎng);
(Ⅱ)設(shè)AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫(xiě)出自變量m的取值范圍;
(Ⅲ)以點(diǎn)E為圓心作⊙E與x軸相切,探究并猜想:⊙P和⊙E有哪幾種位置關(guān)系,并求出AP相應(yīng)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,拋物線y=-
3
3
x2-
2
3
3
x+
3
的圖象與x軸分別交于A,B兩點(diǎn),與y軸交精英家教網(wǎng)于C點(diǎn),⊙M經(jīng)過(guò)原點(diǎn)O及點(diǎn)A、C,點(diǎn)D是劣弧
OA
上一動(dòng)點(diǎn)(D點(diǎn)與A、O不重合).
(1)求拋物線的頂點(diǎn)E的坐標(biāo);
(2)求⊙M的面積;
(3)連CD交AO于點(diǎn)F,延長(zhǎng)CD至G,使FG=2,試探究,當(dāng)點(diǎn)D運(yùn)動(dòng)到何處時(shí),直線GA與⊙M相切,并請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案