【題目】四邊形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,連接DF,G為DF的中點,連接EG,CG,EC.
(1)問題發(fā)現(xiàn):如圖1,若點E在CB的延長線上,直接寫出EG與GC的位置關(guān)系及的值;
(1)操作探究:將圖1中的△BEF繞點B順時針旋轉(zhuǎn)至圖2所示位置,請問(1)中所得的結(jié)論是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由;
(2)解決問題:將圖1中的△BEF繞點B順時針旋轉(zhuǎn),若BE=1,AB=,當(dāng)E,F,D三點共線時,請直接寫出CE的長.
【答案】(1),;(2)成立,理由見解析;(3)或
【解析】
(1)過G作GH⊥EC于H,推出EF∥GH∥DC,求出H為EC中點,根據(jù)梯形的中位線求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根據(jù)直角三角形的判定推出△EGC是等腰直角三角形即可.
(2)延長EG到H,使EG=GH,連接CH、EC,過E作BC的垂線EM,延長CD,證△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,證出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案.
(3)分類討論,畫出圖形,根據(jù)勾股定理,即可求出EC的長度.
(1)EG⊥CG,,理由是:
如圖1,過G作GH⊥EC于H,
∵∠FEB=∠DCB=90°,∴EF∥GH∥DC.
∵G為DF中點,∴H為EC中點.
∴EG=GC,GH=(EF+DC)=(EB+BC),即GH=EH=BC.
∴∠EGC=90°,即△EGC是等腰直角三角形.
∴
(2)結(jié)論還成立,理由是:
如圖2,延長到,使,連接、,
∵在和中
∴,
∴,,
∵
∴
∵
∴
在和中
∴.
∴,,
∴,
∴是等腰直角三角形,
∵為的中點,
∴,,即(1)中的結(jié)論仍然成立;
(3)或 理由如下:
當(dāng)△BEF在BC的上方時,連接BD,CE
∵在正方形ABCD,AB=AD=,
∴BD=.
∴DE=
∴DF=DE-EF=.
由(1)可知∠EGC=90°
∴CG⊥FD
∵G為FD中點
∴CG垂直平分FD
∴
∴
在Rt△DGC中,
在Rt△ECG中,
當(dāng)△BEF在BC的上方時,連接BD,CE
在正方形ABCD中, ,∠ABC=90°
∴∠EBC=90°
在Rt△EBC中,
故EC的長為 或
故答案為: 或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計算: +|1-|-2cos30+()-1-(2019-)0
(2)解不等式組,并求出它的整數(shù)解,再化簡代數(shù)式,從上述整數(shù)解中選擇一個合適的數(shù),求此代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接2020年高中招生考試,某中學(xué)對全校九年級學(xué)生進行了一次數(shù)學(xué)摸底考試,并隨機抽取了部分學(xué)生的測試成績作為樣本進行分析,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給信息,解答下列問題:
(1)請將表示成績類別為“中”的條形統(tǒng)計圖補充完整;
(2)請將表示成績類別為“優(yōu)”的扇形統(tǒng)計圖補充完整,并計算成績類別為“優(yōu)”的扇形所對應(yīng)的圓心角的度數(shù);
(3)學(xué)校九年級共有人參加了這次數(shù)學(xué)考試,估算該校九年級共有多少名學(xué)生的數(shù)學(xué)成績可以達到優(yōu)秀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與x軸交于A,B兩點,點A在點B的左側(cè).
(1)若點B的坐標(biāo)為.
①求拋物線的對稱軸;
②當(dāng)時,函數(shù)值y的取值范圍,求n的值;
(2)將拋物線在x軸上方的部分沿x軸翻折,得到新的函數(shù)圖象,當(dāng)時,此函數(shù)的值隨x的增大而增大,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的高,以CD為直徑作⊙O分別交AC,BC于點E,F,過點E作⊙O的切線,分別交直線BC,AB于點H,G.
(1)求證:HG=GB;
(2)若⊙O的直徑為4,連接OG,交⊙O于點M.填空:
①連接OE,ME,DM.當(dāng)EG=____時,四邊形OEMD為菱形;
②連接OE.當(dāng)EG=_________時,四邊形OEAG為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園手機”現(xiàn)象越來越受到社會的關(guān)注,小記者張明隨機調(diào)查了某校若干名學(xué)生和家長對中學(xué)生帶手機現(xiàn)象的看法,制作了如圖所示的統(tǒng)計圖.
(1)這次調(diào)查的學(xué)生人數(shù)是________名,家長人數(shù)是________名;
(2)補全兩個統(tǒng)計圖;
(3)針對隨機調(diào)查的情況,張明決定從九(1)班表示贊成的4名家長中隨機選擇2名進行深入調(diào)查,其中包含小亮的爸爸和媽媽,小亮的爸爸和媽媽被同時選中的概率是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知、,B為y軸上的動點,以AB為邊構(gòu)造,使點C在x軸上,為BC的中點,則PM的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在超市幫媽媽買回一袋紙杯,他把紙杯整齊地疊放在一起,如圖請你根據(jù)圖中的信息,若小明把100個紙杯整齊疊放在一起時,它的高度約是( 。
A.106cmB.110cmC.114cmD.116cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB,
(1)求證:直線AB是⊙O的切線;
(2)OA,OB分別交⊙O于點D,E,AO的延長線交⊙O于點F,若AB=4AD,求sin∠CFE的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com