【題目】一家化工廠原來每月利潤為120萬元,從今年1月起安裝使用回收凈化設(shè)備(安裝時(shí)間不計(jì)),一方面改善了環(huán)境,另一方面大大降低原料成本.據(jù)測算,使用回收凈化設(shè)備后的1至x月(1≤x≤12)的利潤的月平均值w(萬元)滿足w=10x+90,第二年的月利潤穩(wěn)定在第1年的第12個(gè)月的水平.
(1)設(shè)使用回收凈化設(shè)備后的1至x月(1≤x≤12)的利潤和為y,寫出y關(guān)于x的函數(shù)關(guān)系式,并求前幾個(gè)月的利潤和等于700萬元;
(2)當(dāng)x為何值時(shí),使用回收凈化設(shè)備后的1至x月的利潤和與不安裝回收凈化設(shè)備時(shí)x個(gè)月的利潤和相等;
(3)求使用回收凈化設(shè)備后兩年的利潤總和.
【答案】(1)前5個(gè)月的利潤和等于700萬元;(2)x=3;(3)6360萬元.
【解析】
試題分析:(1)根據(jù)y=xw,把w=10x+90代入化簡可得y與x的函數(shù)關(guān)系式,令y=0,解方程即可;(2)令y=120x,然后解方程即可;(3)分別求出兩年的利潤相加即可.
試題解析:(1)y=xw=x(10x+90)=,
=700,
解得:x1=5 x2=﹣14(不合題意,舍去),
答:前5個(gè)月的利潤和等于700萬元;
(2)=120x,
解得:x1=3 x2=0(不合題意,舍去),
答:當(dāng)x為3時(shí),使用回收凈化設(shè)備后的1至x月的利潤和與不安裝回收凈化設(shè)備時(shí)x個(gè)月的利潤和相等;
(3)第一年全年的利潤是:12(10×12+90)=2520(萬元),
前11個(gè)月的總利潤是:11(10×11+90)=2200(萬元),
∴第12月的利潤是2520﹣2200=320萬元,
第二年的利潤總和是12×320=3840萬元,
2520+3840=6360(萬元).
答:使用回收凈化設(shè)備后兩年的利潤總和是6360萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式從左到右的變形中,是因式分解的為( 。
A. ab+ac+d=a(b+c)+dB. (x+2)(x﹣2)=x2﹣4
C. 6ab=2a3bD. x2﹣8x+16=(x﹣4)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)y=3x﹣1,下列說法正確的是( 。
A. 它的圖象過點(diǎn)(3,﹣1) B. y值隨著x值增大而減小
C. 它的圖象經(jīng)過第二象限 D. 當(dāng)x>1時(shí),y>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】a5 可以等于( )
A. (-a)2·(-a)3B. (-a) ·(-a)4C. (-a 2) ·a 3D. (-a 3) ·(-a 2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種零件,標(biāo)明要求是φ20±0.02 mm(φ表示直徑,單位:毫米),經(jīng)檢查,一個(gè)零件的直徑是19.9 mm,該零件 (填“合格”或“不合格”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若點(diǎn)M是x軸正半軸上的任意一點(diǎn),過點(diǎn)M作PQ∥y軸,分別交函數(shù)(x>0)和(x>0)的圖象于點(diǎn)P和Q,連接OP、OQ,則下列結(jié)論正確的是( )
A. ∠POQ不可能等于900 B.
C. 這兩個(gè)函數(shù)的圖象一定關(guān)于x軸對稱 D. △POQ的面積是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com