矩形的性質:(1)四個角是________;(2)對角線________.

矩形的判定:(1)有三個角是________的四邊形是矩形;(2)有一個角是________的平行四邊形是矩形;(3)對角線________的四邊形是矩形.

答案:直角;相等且互相平分;直角;直角;相等且互相平分
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在探究矩形的性質時,小明得到了一個有趣的結論:矩形兩條對角線的平方和等于四條邊的平方和.如圖1,在矩形ABCD中,由勾股定理,得AC2=AB2+BC2,BD2=AB2+AD2,又CD=AB,AD=BC,所以AC2+BD2=AB2+BC2+CD2+AD2=2(AB2+BC2).
小亮對菱形進行了探究,也得到了同樣的結論,于是小亮猜想:任意平行四邊形兩條對角線的平方和等于四條邊的平方和.請你解決下列問題:
(1)如圖2,已知:四邊形ABCD是菱形,求證:AC2+BD2=2(AB2+BC2);
(2)你認為小亮的猜想是否成立,如果成立,請利用圖3給出證明;如果不成立,請舉反例說明;
(3)如圖4,在△ABC中,BC、AC、AB的長分別為a、b、c,AD是BC邊上的中線.試求AD的長.(結果用a,b,c表示)
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在探究矩形的性質時,小明得到了一個有趣的結論:矩形兩條對角線的平方和等于四條邊的平方和.如圖1,在矩形ABCD中,由勾股定理,得AC2=AB2+BC2,BD2=AB2+AD2,又CD=AB,AD=BC,所以AC2+BD2=AB2+BC2+CD2+AD2=2(AB2+BC2).
小亮對菱形進行了探究,也得到了同樣的結論,于是小亮猜想:任意平行四邊形兩條對角線的平方和等于四條邊的平方和.請你解決下列問題:
(1)如圖2,已知:四邊形ABCD是菱形,求證:AC2+BD2=2(AB2+BC2);
(2)你認為小亮的猜想是否成立,如果成立,請利用圖3給出證明;如果不成立,請舉反例說明;
(3)如圖4,在△ABC中,BC、AC、AB的長分別為a、b、c,AD是BC邊上的中線.試求AD的長.(結果用a,b,c表示)

查看答案和解析>>

科目:初中數(shù)學 來源:2011年安徽省馬鞍山市成功學校中考數(shù)學一模試卷(解析版) 題型:解答題

在探究矩形的性質時,小明得到了一個有趣的結論:矩形兩條對角線的平方和等于四條邊的平方和.如圖1,在矩形ABCD中,由勾股定理,得AC2=AB2+BC2,BD2=AB2+AD2,又CD=AB,AD=BC,所以AC2+BD2=AB2+BC2+CD2+AD2=2(AB2+BC2).
小亮對菱形進行了探究,也得到了同樣的結論,于是小亮猜想:任意平行四邊形兩條對角線的平方和等于四條邊的平方和.請你解決下列問題:
(1)如圖2,已知:四邊形ABCD是菱形,求證:AC2+BD2=2(AB2+BC2);
(2)你認為小亮的猜想是否成立,如果成立,請利用圖3給出證明;如果不成立,請舉反例說明;
(3)如圖4,在△ABC中,BC、AC、AB的長分別為a、b、c,AD是BC邊上的中線.試求AD的長.(結果用a,b,c表示)

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇期中題 題型:單選題

正方形具有而矩形不一定具有的性質是

[     ]

A、四個角都是直角
B、對角線互相平分
C、對角線相等
D、對角線互相垂直

查看答案和解析>>

同步練習冊答案