(1)如圖1,正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,∠EAF=45°,延長(zhǎng)CD到點(diǎn)G,使DG=BE,連結(jié)EF,AG.求證:EF=FG.
(2)如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點(diǎn)M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長(zhǎng).
(1)證明:在正方形ABCD中,
∠ABE=∠ADG,AD=AB,
在△ABE和△ADG中,
∴△ABE≌△ADG(SAS),
∴∠BAE=∠DAG,AE=AG,
∴∠EAG=90°,
在△FAE和△GAF中,
,
∴△FAE≌△GAF(SAS),
∴EF=FG;
(2)解:如圖,過(guò)點(diǎn)C作CE⊥BC,垂足為點(diǎn)C,截取CE,使CE=BM.連接AE、EN.
∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.
∵CE⊥BC,∴∠ACE=∠B=45°.
在△ABM和△ACE中,
∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.
∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.
于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.
在△MAN和△EAN中,
∴△MAN≌△EAN(SAS).
∴MN=EN.
在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.
∴MN2=BM2+NC2.
∵BM=1,CN=3,
∴MN2=12+32,
∴MN=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知△ABC中,AB=AC,點(diǎn)D、E在BC上,要使△ABD≌ACE,則只需添加一個(gè)適當(dāng)?shù)臈l件是 .(只填一個(gè)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,點(diǎn)M、N分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),且BM=CN,AM交BN于點(diǎn)P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如果兩個(gè)相似多邊形面積的比為1:5,則它們的相似比為( 。
A. 1:25 B.1:5 C.1:2.5 D. 1:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,點(diǎn)D,E分別在邊AB,AC上,DE∥BC,已知AE=6,,則EC的長(zhǎng)是( 。
A. 4.5 B.8 C 10.5 D. 14
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)P在⊙O上,PB與CD交于點(diǎn)F,∠PBC=∠C.
(1)求證:CB∥PD;
(2)若∠PBC=22.5°,⊙O的半徑R=2,求劣弧AC的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com