【題目】A、B兩地相距50km,甲于某日騎自行車從A地出發(fā)駛往B地,乙也于同日下午騎摩托車從A地出發(fā)駛往B地,在這個變化過程中,甲和乙所行駛的路程用變量skm)表示,甲所用的時間用變量t(時)表示,圖中折線OPQ和線段MN分別表示甲和乙所行駛的路程s與時間t的變化關(guān)系,請根據(jù)圖象回答:

1)直接寫出:甲出發(fā)后______小時,乙才開始出發(fā);

2)請分別求出甲出發(fā)1小時后的速度和乙的行駛速度?

3)求乙行駛幾小時后追上甲,此時兩人距B地還有多少千米?

【答案】(1)1;(2)甲:25km/h,乙:10km/h;(3)乙行駛小時后追上甲,此時兩人距地還有千米

【解析】

(1)觀察函數(shù)圖象得到甲出發(fā)后1小時,乙才開始出發(fā);

(2)根據(jù)路程除以時間等于速度,列式求解即可得到答案;

(3)設(shè)乙行駛小時后追上甲,根據(jù)題意得,求解即可得到答案;

解:(1)觀察函數(shù)圖象得到甲出發(fā)后1小時,乙才開始出發(fā),

故填:1;

2)由圖像信息可知:乙的速度為:千米/時,

甲出發(fā)1小時后的速度為:千米/時.

3)設(shè)乙行駛小時后追上甲,結(jié)合圖片信息和(2)的結(jié)果得到:

,

解得,

即乙行駛小時后追上甲,此時兩人距地還有(千米);

答:乙行駛小時后追上甲,此時兩人距地還有千米;

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】操作探究:

1)實踐:如圖1, 中,邊上的中線,的面積記為,的面積記為.則

2)探究:在圖2中,、分別為四邊形的邊的中點,四邊形的面積記為,陰影部分面積記為,則之間滿足的關(guān)系式為______

3)解決問題:

在圖3中,、、、分別為任意四邊形的邊、、、的中點,并且圖中陰影部分的面積為平方厘米,求圖中四個小三角形的面積和,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種事物經(jīng)歷了加熱,冷卻兩個聯(lián)系過程,折線圖DEF表示食物的溫度y(℃)與時間x(s)之間的函數(shù)關(guān)系(0≤x≤160),已知線段EF表示的函數(shù)關(guān)系中,時間每增加1s,食物溫度下降0.3℃,根據(jù)圖象解答下列問題;

(1)當時間為20s、100s時,該食物的溫度分別為℃,℃;
(2)求線段DE所表示的y與x之間的函數(shù)表達式;
(3)時間是多少時,該食物的溫度最高?最高是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,對角線ACBD相交于點O,DE∥AC,AE∥BD

(1)、求證:四邊形AODE是矩形;(2)、若AB6∠BCD120°,求四邊形AODE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC,△CDE均為等邊三角形(每個內(nèi)角都是60°),連接BD,AE交于點OBCAE交于點P.試說明:∠POB=60°.經(jīng)過觀察分析,解題的關(guān)鍵是先利用( )說明△EAC≌△DBC

A.SSSB.ASAC.SASD.AAS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點為平面內(nèi)一點.

1)如圖1,互余,小明說過,很容易說明。請幫小明寫出具體過程;

2)如圖2,,當點在線段上移動時(點兩點不重合),指出,的數(shù)量關(guān)系?請說明理由;

3)在(2)的條件下,若點,兩點外側(cè)運動(點,三點不重合)請直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學初三(1)班共有40名同學,在一次30秒跳繩測試中他們的成績統(tǒng)計如下表:

跳繩數(shù)/個

81

85

90

93

95

98

100

人 數(shù)

1

2

8

11

5

將這些數(shù)據(jù)按組距5(個)分組,繪制成如圖的頻數(shù)分布直方圖(不完整).

(1)將表中空缺的數(shù)據(jù)填寫完整,并補全頻數(shù)分布直方圖;
(2)這個班同學這次跳繩成績的眾數(shù)是個,中位數(shù)是個;
(3)若跳滿90個可得滿分,學校初三年級共有720人,試估計該中學初三年級還有多少人跳繩不能得滿分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:RtABC中,∠C90°,ACBC2,將一塊三角尺的直角頂點與斜邊AB的中點M重合,當三角尺繞著點M旋轉(zhuǎn)時,兩直角邊始終保持分別與邊BCAC交于D,E兩點(DE不與B、A重合).

1)求證:MDME

2)求四邊形MDCE的面積;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A(1,0)、B(3,0).拋物線y=x2﹣2mx+m2﹣4的頂點為P,與y軸的交點為Q.

(1)填空:點P的坐標為;點Q的坐標為(均用含m的代數(shù)式表示)
(2)當拋物線經(jīng)過點A時,求點Q的坐標.
(3)連接QA、QB,設(shè)△QAB的面積為S,當拋物線與線段AB有公共點時,求S與m之間的函數(shù)關(guān)系式.
(4)點P、Q不重合時,以PQ為邊作正方形PQMN(P、Q、M、N分別按順時針方向排列).當正方形PQMN的四個頂點中,位于x軸兩側(cè)或y軸兩側(cè)的頂點個數(shù)相同時,直接寫出此時m的取值范圍.

查看答案和解析>>

同步練習冊答案