【題目】已知拋物線(xiàn)y= x2﹣2x﹣1
(1)用配方法把拋物線(xiàn)化成頂點(diǎn)式,指出開(kāi)口方向頂點(diǎn)坐標(biāo)和對(duì)稱(chēng)軸
(2)用描點(diǎn)法畫(huà)出圖象.

【答案】
(1)解:y= x2﹣2x﹣1,

= (x2﹣4x+4)﹣ ×4﹣1,

= (x﹣2)2﹣3;

∵a= >0,

∴開(kāi)口方向:向上,

頂點(diǎn)坐標(biāo):(2,﹣3),

對(duì)稱(chēng)軸:x=2


(2)解:列表,

x

0

1

2

3

4

y= x2﹣2x﹣1

﹣1

﹣2.5

﹣3

﹣2.5

﹣1


【解析】(1)根據(jù)配方法,先提取 ,然后利用完全平方公式整理即可,再根據(jù)a是正數(shù)以及頂點(diǎn)式形式分別求解即可;(2)根據(jù)二次函數(shù)圖象的作法,列表、描點(diǎn)、連線(xiàn)畫(huà)出圖象即可.
【考點(diǎn)精析】掌握二次函數(shù)的圖象是解答本題的根本,需要知道二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=a(x﹣h)2+ 的圖象經(jīng)過(guò)原點(diǎn)O(0,0),A(2,0).
(1)寫(xiě)出該函數(shù)圖象的對(duì)稱(chēng)軸;
(2)若將線(xiàn)段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°到OA′,試判斷點(diǎn)A′是否為該函數(shù)圖象的頂點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,若的角平分線(xiàn),點(diǎn)和點(diǎn)分別在上,且,垂足為,,垂足為(如圖),則可以得到以下兩個(gè)結(jié)論:

;

那么在中,仍然有條件的角平分線(xiàn),點(diǎn)和點(diǎn),分別在,請(qǐng)?zhí)骄恳韵聝蓚(gè)問(wèn)題:

(如圖),則是否仍相等?若仍相等,請(qǐng)證明;否則請(qǐng)舉出反例.

,則是否成立?(只寫(xiě)出結(jié)論,不證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)y=m是平行于x軸的直線(xiàn),將拋物線(xiàn)y=﹣ x2﹣4x在直線(xiàn)y=m上側(cè)的部分沿直線(xiàn)y=m翻折,翻折后的部分與沒(méi)有翻折的部分組成新的函數(shù)圖象,若新的函數(shù)圖象剛好與直線(xiàn)y=﹣x有3個(gè)交點(diǎn),則滿(mǎn)足條件的m的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD紙片中,已知∠A=160°,B=30°,C=60°,四邊形ABCD紙片分別沿EF,GH,OP,MN折疊,使AA′、BB′、CC′、DD′重合,則∠1+2+3+4+5+6+7﹣8的值是( 。

A. 600° B. 700° C. 720° D. 800°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC和△DCE均是等邊三角形,點(diǎn)B、C、E在同一條直線(xiàn)上,AE與BD交于點(diǎn)O,AE與CD交于點(diǎn)G,AC與BD交于點(diǎn)F,連接OC、FG,則下列結(jié)論:①AE=BD;②A(yíng)O=BF;③FG∥BE;④∠BOC=∠EOC;⑤BO=OC+AO,其中正確的結(jié)論有( )個(gè).
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A(yíng),B兩點(diǎn),正比例函數(shù)的圖象l2與l1交于點(diǎn)C(m,4).

(1)求m的值及l(fā)2的解析式;

(2)求S△AOC﹣S△BOC的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.在等邊△ABC中,∠ABC與∠ACB的平分線(xiàn)相交于點(diǎn)O,且ODAB,OEAC.

(1)試判定△ODE的形狀,并說(shuō)明你的理由;

(2)線(xiàn)段BD、DE、EC三者有什么關(guān)系?寫(xiě)出你的判斷過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案