【題目】如圖,M,N是以AB為直徑的⊙O上的點(diǎn),且=,弦MN交AB于點(diǎn)C,BM平分∠ABD,MF⊥BD于點(diǎn)F.
(1)求證:MF是⊙O的切線;
(2)若CN=3,BN=4,求CM的長(zhǎng).
【答案】(1)見解析;(2)CM=.
【解析】
(1)根據(jù)等腰三角形的性質(zhì)和角平分線的定義證得∠OMB=∠MBF,得出OM∥BF,即可證得OM⊥MF,即可證得結(jié)論;
(2)由勾股定理可求AB的長(zhǎng),可得AO,BO,ON的長(zhǎng),由勾股定理可求CO的長(zhǎng),通過證明△ACN∽△MCB,可得,即可求CM的長(zhǎng).
(1)連接OM,
∵OM=OB,
∴∠OMB=∠OBM,
∵BM平分∠ABD,
∴∠OBM=∠MBF,
∴∠OMB=∠MBF,
∴OM∥BF,
∵MF⊥BD,
∴OM⊥MF,即∠OMF=90°,
∴MF是⊙O的切線;
(2)如圖,連接,
,
是直徑,,
,
,
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對(duì)全校學(xué)生進(jìn)行文明禮儀知識(shí)測(cè)試,為了解測(cè)試結(jié)果,隨機(jī)抽取部分學(xué)生的成績(jī)進(jìn)行分析,將成績(jī)分為三個(gè)等級(jí):不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計(jì)圖(不完整).
請(qǐng)你根據(jù)圖中所給的信息解答下列問題:
(1)請(qǐng)將以上兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若“一般”和“優(yōu)秀”均被視為達(dá)標(biāo)成績(jī),則該校被抽取的學(xué)生中有______人達(dá)標(biāo);
(3)若該校學(xué)生有1000人,請(qǐng)你估計(jì)此次測(cè)試中,全校達(dá)標(biāo)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某一個(gè)函數(shù)給出如下定義:若存在實(shí)數(shù),對(duì)于任意的函數(shù)值,都滿足,則稱這個(gè)函數(shù)是有界函數(shù),在所有滿足條件的中,其最小值稱為這個(gè)函數(shù)的邊界值.例如,下圖中的函數(shù)是有界函數(shù),其邊界值是1.
(1)分別判斷函數(shù)和是不是有界函數(shù)?若是有界函數(shù),求其邊界值;
(2)若函數(shù)的邊界值是2,且這個(gè)函數(shù)的最大值也是2,求的取值范圍;
(3)將函數(shù)的圖象向下平移個(gè)單位,得到的函數(shù)的邊界值是,當(dāng)在什么范圍時(shí),滿足?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,P是邊AD上的一點(diǎn),連接BP,CP過點(diǎn)B作射線交線段CP的延長(zhǎng)線于點(diǎn)E,交AD邊于點(diǎn)M,且使∠ABE=∠CBP,AB=2,BC=5.
(1)證明:△ABM∽△APB;
(2)當(dāng)AP=3時(shí),求sin∠EBP的值;
(3)如果△EBC是以BC為底邊的等腰三角形,求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長(zhǎng)為cm,在AC,BC邊上各取一點(diǎn)E,F,使得AE=CF,連接AF,BE相交于點(diǎn)P.(1)則∠APB=______度;(2)當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),則動(dòng)點(diǎn)P經(jīng)過的路徑長(zhǎng)為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=90°
(1)在BC邊上找一點(diǎn)P,作⊙P與AC,AB邊都相切,與AC的切點(diǎn)為Q;(尺規(guī)作圖,保留作圖痕跡)
(2)若AB=4,AC=6,求第(1)題中所作圓的半徑;
(3)連接BQ,第(2)題中的條件不變,求cos∠CBQ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD內(nèi)接于⊙O,連接AC、BD,2∠BDC+∠ADB=180°.
(1)如圖1,求證:AC=BC;
(2)如圖2,E為⊙O上一點(diǎn), =,F為AC上一點(diǎn),DE與BF相交于點(diǎn)T,連接AT,若∠BFC=∠BDC+∠ABD,求證:AT平分∠DAB;
(3)在(2)的條件下,DT=TE,AD=8,BD=12,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是以數(shù)軸的原點(diǎn)O為圓心,以3為半徑的圓,∠AOB=45°,點(diǎn)P在數(shù)軸上運(yùn)動(dòng).若過點(diǎn)P與OA平行的直線與⊙O有公共點(diǎn),設(shè)點(diǎn)P在數(shù)軸上表示的數(shù)為x.則x的取值范圍是( 。
A.0≤x≤3B.x>3C.﹣3≤x≤3D.﹣3≤x≤3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售一種兒童玩具,進(jìn)價(jià)為每件30元,物價(jià)部門規(guī)定每件兒童玩具的銷售利潤(rùn)不高于進(jìn)價(jià)的.在銷售過程中發(fā)現(xiàn),這種兒童玩具每天的銷售量(件與銷售單價(jià)(元滿足一次函數(shù)關(guān)系.當(dāng)銷售單價(jià)為35元時(shí),每天的銷售量為350件;當(dāng)銷售單價(jià)為40元時(shí),每天的銷售量為300件.
(1)求與之間的函數(shù)關(guān)系式.
(2)當(dāng)銷售單價(jià)為多少時(shí),該網(wǎng)店銷售這種兒童玩具每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com