已知A、B兩點(diǎn)的坐標(biāo)分別是(-2,3)和(2,3),則下面四個(gè)結(jié)論:
①A、B關(guān)于x軸對(duì)稱;②A、B關(guān)于y軸對(duì)稱;③A、B關(guān)于原點(diǎn)對(duì)稱;④若A、B之間的距離為4.
其中正確的有________個(gè).

2
分析:關(guān)于橫軸的對(duì)稱點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)變成相反數(shù);關(guān)于縱軸的對(duì)稱點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)變成相反數(shù);A,B兩點(diǎn)的坐標(biāo)分別是(-2,3)和(2,3),縱坐標(biāo)相同,因而AB平行于x軸,A,B之間的距離為4.
解答:根據(jù)平面內(nèi)點(diǎn)對(duì)稱的特點(diǎn),
①A、B關(guān)于x軸對(duì)稱,錯(cuò)誤;
②A,B關(guān)于y軸對(duì)稱,正確;
③A、B關(guān)于原點(diǎn)對(duì)稱,錯(cuò)誤;
④若A,B之間的距離為4,正確;
正確的只有②④,
故答案為2個(gè).
點(diǎn)評(píng):本題考查的是如何利用點(diǎn)的坐標(biāo)判斷兩點(diǎn)關(guān)于x軸,y軸是否對(duì)稱.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABDO中,已知A、D兩點(diǎn)的坐標(biāo)分別為A(
3
,
3
),D(2
3
,0).將?ABDO向左平移
3
個(gè)單位,得到四邊形A′B′D′O′.拋物線C經(jīng)過點(diǎn)A′、B′、D′.
(1)在圖中作出四邊形A′B′D′O′,并寫出它的四個(gè)頂點(diǎn)坐標(biāo);
(2)在拋物線C上是否存在點(diǎn)P,使△ABP的面積恰好為四邊形A′B′D′O′的面積的一半?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(2
3
,O)、(0,2),P是△AOB外接圓上的一點(diǎn),且∠AOP=45°,
(1)求點(diǎn)P的坐標(biāo);
精英家教網(wǎng)
(2)連BP、AP,在PB上任取一點(diǎn)E,連AE,將線段AE繞A點(diǎn)順時(shí)針旋轉(zhuǎn)90°到AF,連BF,交AP于點(diǎn)G,當(dāng)E在線段BP上運(yùn)動(dòng)時(shí),(不與B、P重合),求
BE
PG
;
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形OABC中,已知B、C兩點(diǎn)的坐標(biāo)分別為B(8,6)、C(10,0),動(dòng)點(diǎn)M由原點(diǎn)O出發(fā)沿OB方向勻速運(yùn)動(dòng),速度為1單位/秒;同時(shí),線段DE由CB出發(fā)沿BA方向勻速運(yùn)動(dòng),速度為1單位/秒,交OB于點(diǎn)N,連接DM,過點(diǎn)M作MH⊥AB于H,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<8).
(1)試說明:△BDN∽△OCB;
(2)試用t的代數(shù)式表示MH的長(zhǎng);
(3)當(dāng)t為何值時(shí),以B、D、M為頂點(diǎn)的三角形與△OAB相似?
(4)設(shè)△DMN的面積為y,求y與t之間的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

材料一:在平面直角坐標(biāo)系中,如果已知A,B兩點(diǎn)的坐標(biāo)為(x1,y1)和(x2,y2),設(shè)AB=t,那么我們可以通過構(gòu)造直角三角形用勾股定理得出結(jié)論:(x1-x22+(y1-y22=t2
材料二:根據(jù)圓的定義,圓是到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)的集合(其中定點(diǎn)為圓心,定長(zhǎng)為半徑).如果把圓放在平面直角坐標(biāo)系中,我們?cè)O(shè)圓心坐標(biāo)為(a,b),半徑為r,圓上任意一點(diǎn)的坐標(biāo)為(x,y),那么我們可以根據(jù)材料一的結(jié)論得出:(x-a)2+(y-b)2=r2,這個(gè)二元二次方程我們把它定義為圓的方程.比如:以點(diǎn)(3,4)為圓心,4為半徑的圓,我們可以用方程(x-3)2+(y-4)2=42來表示.事實(shí)上,滿足這個(gè)方程的任意一個(gè)坐標(biāo)(x,y),都在已知圓上.
認(rèn)真閱讀以上兩則材料,回答下列問題:
(1)方程(x-7)2+(y-8)2=81表示的是以
(7,8)
(7,8)
為圓心,
9
9
為半徑的圓的方程.
(2)方程x2+y2-2x+2y+1=0表示的是以
(1,-1)
(1,-1)
為圓心,
1
1
為半徑的圓的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F(xiàn)為常數(shù))表示的是一個(gè)圓的方程,則D,E,F(xiàn)要滿足的條件是
D2+E2-4F>0
D2+E2-4F>0

(3)方程x2+y2=4所表示的圓上的所有點(diǎn)到點(diǎn)(3,4)的最小距離是
3
3
(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,ABOC是平行四邊形.已知A、B兩點(diǎn)的坐標(biāo)分別為A(-3
2
2
),B(-2
2
,0).
(1)求C點(diǎn)的坐標(biāo);
 (2)將平行四邊形向右平移
2
個(gè)單位長(zhǎng)度,再向下平移
2
個(gè)單位長(zhǎng)度,所得四邊形 的四個(gè)頂點(diǎn)的坐標(biāo)是多少?并畫出大致位置.
 (3)求平行四邊形ABOC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案