【題目】如圖,在△ABC中,∠C90°,BC3,AC5,點(diǎn)D為線段AC上一動(dòng)點(diǎn),將線段BD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為E,連接AE,則AE長(zhǎng)的最小值為_____

【答案】

【解析】

由旋轉(zhuǎn)的性質(zhì)可知BDDE,∠C90°,則容易想到構(gòu)造一個(gè)直角三角形與RtBCD全等,即過(guò)E點(diǎn)作EHAD于點(diǎn)H,設(shè)CDx,則可用x表示AE的長(zhǎng),從而判斷什么時(shí)候AE取得最小值.

設(shè)CDx,則AD5x,

過(guò)點(diǎn)EEHAD于點(diǎn)H,如圖:

由旋轉(zhuǎn)的性質(zhì)可知BDDE,

∵∠ADE+BDC90°,∠BDC+CBD90°,

∴∠ADE=∠CBD

又∵∠EHD=∠C,

∴△BCD≌△DHE,

EHCDxDHBC3

AD5x,

AHADDH5x32x,

∵在RtAEH中,AE2AH2+EH2=(2x2+x22x2+4x+42x12+2

所以當(dāng)x1時(shí),AE2取得最小值2,即AE取得最小值

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年,67日為端午節(jié).在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況.請(qǐng)根據(jù)小麗提供的信息,解答小華和小明提出的問(wèn)題.

小麗

每個(gè)定價(jià)3元,每天能賣出500個(gè).若這種粽子的售價(jià)每上漲0.1元,其銷售量將減少10個(gè)

小華

照你說(shuō),若要實(shí)現(xiàn)每天800元的銷售利潤(rùn),那該如何定價(jià)?別忘了,根據(jù)物價(jià)局規(guī)定,售價(jià)不能超過(guò)進(jìn)價(jià)的

小明

若按照物價(jià)局規(guī)定的最高售價(jià),每天的利潤(rùn)會(huì)超過(guò)800元嗎?請(qǐng)判斷并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中對(duì)角線ACBD相交于點(diǎn)O,CEBD,垂足為點(diǎn)E,CE=5,且EO=2DE,則ED的長(zhǎng)為( )

A.B.2C.1D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)兩點(diǎn)A(﹣30),B03),且其對(duì)稱軸為直線x=﹣1

1)求此拋物線的解析式.

2)若點(diǎn)Q是對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)OQ+BQ最小時(shí),求點(diǎn)Q的坐標(biāo).

3)若點(diǎn)P是拋物線上點(diǎn)A與點(diǎn)B之間的動(dòng)點(diǎn)(不包括點(diǎn)A,點(diǎn)B),求PAB面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l上作出所有的點(diǎn)P,使得∠APB=30°,如圖②,小明的作圖方法如下:

第一步:分別以點(diǎn)AB為圓心,AB長(zhǎng)為半徑作弧,兩弧在AB上方交于點(diǎn)O;

第二步:連接OAOB;

第三步:以O為圓心,OA長(zhǎng)為半徑作⊙O,交lP1P2;

所以圖中P1,P2即為所求的點(diǎn).

1)在圖②中,連接P1AP1B,證明∠AP1B=30°

2)如圖③,用直尺和圓規(guī)在矩形ABCD內(nèi)作出所有的點(diǎn)P,使得∠BPC=45°,(不寫做法,保留作圖痕跡).

3)已知矩形ABCD,若BC=2AB=m,PAD邊上的點(diǎn),若滿足∠BPC=45°的點(diǎn)P恰有兩個(gè),則m的取值范圍為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)H20),經(jīng)過(guò)點(diǎn)A1,1),與y軸交于點(diǎn)C

1)求拋物線的解析式;

2)如圖1,在線段OC(端點(diǎn)除外)上是否存在一點(diǎn)N,直線NA交拋物線于另一點(diǎn)B,滿足BCBN?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)如圖2,過(guò)點(diǎn)P(﹣3,0)作直線交拋物線于點(diǎn)F、G,FMx軸于MGNx軸于N,求PMPN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:

尺規(guī)作圖:如圖,過(guò)圓外一點(diǎn)作圓的切線.

已知:P為⊙O外一點(diǎn).

求作:經(jīng)過(guò)點(diǎn)P的⊙O的切線.

小敏的作法如下:如圖,

(1)連接OP,作線段OP的垂直平分線MNOP于點(diǎn)C.

(2)以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙OA,B兩點(diǎn).

(3)作直線PA,PB.

所以直線PA,PB就是所求作的切線.

老師認(rèn)為小敏的作法正確.

請(qǐng)回答:

(1)連接OA,OB后,可證∠OAP=∠OBP90°,其依據(jù)是_________.

(2)如果⊙O的半徑等于3,點(diǎn)P到切點(diǎn)的距離為4,求點(diǎn)A與點(diǎn)B之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=2x2﹣4x﹣6.

(1)求這個(gè)二次函數(shù)圖象的頂點(diǎn)坐標(biāo)及對(duì)稱軸;

(2)指出該圖象可以看作拋物線y=2x2通過(guò)怎樣平移得到?

(3)在給定的坐標(biāo)系內(nèi)畫(huà)出該函數(shù)的圖象,并根據(jù)圖象回答:當(dāng)x取多少時(shí),yx增大而減;當(dāng)x取多少時(shí),y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò)點(diǎn),交y 軸于點(diǎn)C

1)求拋物線的頂點(diǎn)坐標(biāo).

2)點(diǎn)為拋物線上一點(diǎn),是否存在點(diǎn)使,若存在請(qǐng)直接給出點(diǎn)坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

3)將直線繞點(diǎn)順時(shí)針旋轉(zhuǎn),與拋物線交于另一點(diǎn),求直線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案