如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點P(n,2),與x軸交于點A(﹣4,0),與y軸交于點C,PB⊥x軸于點B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,求出點D的坐標;如果不存在,說明理由.
解:(1)∵AC=BC,CO⊥AB,A(﹣4,0),
∴O為AB的中點,即OA=OB=4,
∴P(4,2),B(4,0),
將A(﹣4,0)與P(4,2)代入y=kx+b得:,
解得:k=,b=1,
∴一次函數(shù)解析式為y=x+1,
將P(4,2)代入反比例解析式得:m=8,即反比例解析式為y=;
(2)假設存在這樣的D點,使四邊形BCPD為菱形,如圖所示,
對于一次函數(shù)y=x+1,令x=0,得到y(tǒng)=1,即C(0,1),
∴直線BC的斜率為=﹣,
設過點P,且與BC平行的直線解析式為y﹣2=﹣(x﹣4),即y=,
與反比例解析式聯(lián)立得:,
消去y得:=,
整理得:x2﹣12x+32=0,即(x﹣4)(x﹣8)=0,
解得:x=4(舍去)或x=8,
當x=8時,y=1,
∴D(8,1),
此時PD==,BC==,即PD=BC,
∵PD∥BC,
∴四邊形BCPD為平行四邊形,
∵PC==,即PC=BC,
∴四邊形BCPD為菱形,滿足題意,
則反比例函數(shù)圖象上存在點D,使四邊形BCPD為菱形,此時D坐標為(8,1).
科目:初中數(shù)學 來源: 題型:
關于x的反比例函數(shù)y=的圖象如圖,A、P為該圖象上的點,且關于原點成中心對稱.△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點B.若△PAB的面積大于12,則關于x的方程(a﹣1)x2﹣x+=0的根的情況是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
若關于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等實數(shù)根,則k的取值范圍是( 。
| A. | k> | B. | k≥ | C. | k>且k≠1 | D. | k≥且k≠1 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,D是BC邊上的點(不與點B、C重合),連結AD.
問題引入:
(1)如圖①,當點D是BC邊上的中點時,S△ABD:S△ABC= ;當點D是BC邊上任意一點時,S△ABD:S△ABC= (用圖中已有線段表示).
探索研究:
(2)如圖②,在△ABC中,O點是線段AD上一點(不與點A、D重合),連結BO、CO,試猜想S△BOC與S△ABC之比應該等于圖中哪兩條線段之比,并說明理由.
拓展應用:
(3)如圖③,O是線段AD上一點(不與點A、D重合),連結BO并延長交AC于點F,連結CO并延長交AB于點E,試猜想++的值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com