已知:二次函數(shù)y=a(x-1)2+4的圖象如圖所示,拋物線交y軸于點C,交x軸于A、B兩點,用A點坐標(biāo)為(-1,0).
(1)求a的值及點B的坐標(biāo).
(2)連接AC、BC,E是線段OC上的動點(不與O、C兩點重合),過E點作直線PE⊥y軸交線段AC于點P,交線段BC于點Q.求證:
CE
CO
=
PQ
AB

(3)設(shè)E點的坐標(biāo)為(0,n),在線段AB上是否存在一點R,使得以P、Q、R為頂點的三角形與△BOC相似?若存在,求出n的值,并畫出相應(yīng)的示意圖;若不存在,請說明理由.
(1)把A點坐標(biāo)為(-1,0)代入y=a(x-1)2+4,得a(-1-1)2+4=0,解得a=-1,
∴y=-(x-1)2+4,
令y=0,-(x-1)2+4=0,
解得x1=-1,x2=3,
∴B點坐標(biāo)為(3,0);

(2)證明:∵直線PE⊥y軸交線段AC于點P,交線段BC于點Q,
∴PQAB,
∴△CPQ△CAB,
CE
CO
=
PQ
AB
;

(3)在線段AB上存在一點R,使得以P、Q、R為頂點的三角形與△BOC相似.理由如下
對于y=-(x-1)2+4,令x=0,y=3,
∴C點坐標(biāo)為(0,3),
∴△OBC為等腰直角三角形,
設(shè)直線BC的解析式為:y=kx+b,
把B(3,0),C(0,3)代入得,
3k+b=3
b=3
,
解得k=-1,b=3,
∴直線BC的解析式為:y=-x+3;
同理可得直線AC的解析式為:y=-3x+3;
∵E點的坐標(biāo)為(0,n),0<n<3,
∴P點坐標(biāo)為(
n
3
-1,n),Q點的坐標(biāo)為(3-n,n),
∴QP=3-n-(
n
3
-1)=4-
4n
3
;
若以P、Q、R為頂點的三角形與△BOC相似,
∴以P、Q、R為頂點的三角形為等腰直角三角形,
當(dāng)∠PQR=90°,QR=QP,如圖,
∵PQAB,
∴QR⊥AB,
∴QR=OE=n,
∴n=4-
4n
3

解得n=
12
7
,
∴R的坐標(biāo)為(
9
7
,0),
當(dāng)∠QPR=90°,PQ=PR,同理可得n=
12
7
,得P點坐標(biāo)為(-
3
7
,
12
7
),則R點坐標(biāo)為(-
3
7
,0);
當(dāng)∠PRQ=90°,RP=RQ,過R作RH⊥PQ于H,如圖,
∴HR=
1
2
PQ,
∴n=
1
2
(4-
4n
3
),
解得n=
6
5

∴P點的坐標(biāo)為(-
3
5
,
6
5
),Q點的坐標(biāo)為(
9
5
,
6
5
),
∴R點的坐標(biāo)為(
3
5
,0).
所以當(dāng)n=
12
7
,R的坐標(biāo)為(
9
7
,0)或(-
3
7
,0);當(dāng)n=
6
5
,R點的坐標(biāo)為(
3
5
,0).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,拋物線y=ax2+bx+c與x軸相交于O、A兩點直線y=-x+3與y軸交于B點,與該拋物線交于A,D兩點,已知點D橫坐標(biāo)為-1.(1)求這條拋物線的解析式;
(2)如圖①,在線段OA上有一動點H(不與O、A重合),過H作x軸的垂線分別交AB于P點,交拋物線于Q點,若x軸把△POQ分成兩部分的面積之比為1:2,請求出H點的坐標(biāo);
(3)如圖②,在拋物線上是否存在點C,使△ABC為直角三角形?若存在,求出點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,Rt△OAB中,∠OAB=90°,O為坐標(biāo)原點,邊OA在x軸上,OA=AB=1個單位長度,把Rt△OAB沿x軸正方向平移1個單位長度后得△AA1B1
(1)求以A為頂點,且經(jīng)過點B1的拋物線的解析式;
(2)若(1)中的拋物線與OB交于點C,與y軸交于點D,求點D、C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:m、n是方程x2-6x+5=0的兩個實數(shù)根,且m<n,拋物線y=-x2+bx+c的圖象經(jīng)過點A(m,0)、B(0,n).
(1)求這個拋物線的解析式;
(2)設(shè)(1)中拋物線與x軸的另一交點為C,拋物線的頂點為D,試求出點C、D的坐標(biāo)和△BCD的面積;
(3)P是線段OC上的一點,過點P作PH⊥x軸,與拋物線交于H點,若直線BC把△PCH分成面積之比為2:3的兩部分,請求出P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以邊長為
2
的正方形ABCD的對角線所在直線建立平面直角坐標(biāo)系,拋物線y=x2+bx+c經(jīng)過點B且與直線AB只有一個公共點.
(1)求直線AB的解析式;
(2)求拋物線y=x2+bx+c的解析式;
(3)若點P為(2)中拋物線上一點,過點P作PM⊥x軸于點M,問是否存在這樣的點P,使△PMC△ADC?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知點A、B、C的坐標(biāo)分別為(-1,0),(5,0),(0,2).
(1)求過A、B、C三點的拋物線解析式;
(2)若點P從A點出發(fā),沿x軸正方向以每秒1個單位長度的速度向B點移動,連接PC并延長到點E,使CE=PC,將線段PE繞點P順時針旋轉(zhuǎn)90°得到線段PF,連接FB.若點P運動的時間為t秒,(0≤t≤6)設(shè)△PBF的面積為S;
①求S與t的函數(shù)關(guān)系式;
②當(dāng)t是多少時,△PBF的面積最大,最大面積是多少?
(3)點P在移動的過程中,△PBF能否成為直角三角形?若能,直接寫出點F的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-
4
5
x2+
24
5
x-4與x軸相交于點A、B,與y軸相交于點C,拋物線的對稱軸與x軸相交于點M.P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上).分別過點A、B作直線CP的垂線,垂足分別為D、E,連接點MD、ME.
(1)求點A,B的坐標(biāo)(直接寫出結(jié)果),并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時點P的坐標(biāo);若不能,說明理由;
(3)若將“P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個動點”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時點P的坐標(biāo)(直接寫出結(jié)果);若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(經(jīng)過原點)與x軸相交于N點,直線y=kx+4與坐標(biāo)軸分別相交于A、D兩點,與拋物線相交于B(1,m)和C(2,2)兩點.
(1)求直線與拋物線的表達式;
(2)求證:C點是△AOD的外心;
(3)若(1)中的拋物線,在x軸上方的部分,有一動點P(x,y),設(shè)∠PON=α.當(dāng)sinα為何值時,△PON的面積有最大值?
(4)若P點保持(3)中運動路線,是否存在△PON,使得其面積等于△OCN面積的
9
16
?若存在,求出動點P的位置;若不存在,請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某塑料大棚的截面如圖所示,曲線部分近似看作拋物線.現(xiàn)測得AB=6米,最高點D到地面AB的距離DO=2.5米,點O到墻BC的距離OB=1米.借助圖中的直角坐標(biāo)系,回答下列問題:
(1)寫出點A,B的坐標(biāo);
(2)求墻高BC.

查看答案和解析>>

同步練習(xí)冊答案